精英家教网 > 高中数学 > 题目详情
设两条平行直线的方程分别为x+y+a=0、x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实数根,且0≤c≤,则这两条直线之间的距离的最大值和最小值分别为(    )

A.           B.             C.           D.

解析:设两平行直线间的距离为d,

    则d=,由题设知

∴(a-b)2=1-4c.

∵0≤c≤,≤(a-b)2≤1,≤|a-b|≤1,

≤d≤,∴dmax=,dmin=.

答案:D


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求
PQ
MQ
的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

A组:直角坐标系xoy中,已知中心在原点,离心率为
1
2
的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.
(1)求椭圆E的方程;
(2)设P是椭圆E上一点,过P作两条斜率之积为
1
2
的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.
B组:如图,在平面直角坐标系xoy中,椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1(-c,0),F2(c,0).已知点(1,e)和(e,
3
2
)
都在椭圆上,其中e为椭圆离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P,若AF1-BF2=
6
2
,求直线AF1的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两条平行直线的方程分别为xya=0、xyb=0,已知ab是关于x的方程x2xc=0的两个实数根,且0≤c,则这两条直线之间的距离的最大值和最小值分别为                                                                      (  )

A.                      B.

C.                      D.

查看答案和解析>>

科目:高中数学 来源:2014届重庆市高二12月月考文科数学试卷(解析版) 题型:解答题

(本题满分13分)已知抛物线过点

(1)求抛物线的标准方程,并求其准线方程;

(2)是否存在平行于(为坐标原点)的直线,使得直线的距离等于?

若存在,求直线的方程,若不存在,说明理由。

(3)过抛物线的焦点作两条斜率存在且互相垂直的直线,设与抛物线相交于点与抛物线相交于点,求的最小值。

 

查看答案和解析>>

同步练习册答案