精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),则函数g(x)=cos(2x﹣φ)的图象(
A.关于点( ,0)对称
B.可由函数f(x)的图象向右平移 个单位得到
C.可由函数f(x)的图象向左平移 个单位得到
D.可由函数f(x)的图象向左平移 个单位得到

【答案】C
【解析】解:∵函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),∴φ=
∴f(x)=2sinxsin(x+ )=sin2x=cos(2x﹣ )=cos2(x﹣ ),
则函数g(x)=cos(2x﹣φ)=cos(2x﹣ )=cos2(x﹣ ) 的图象可由函数f(x)的图象向左平移 个单位得到的,
故选:C.
【考点精析】认真审题,首先需要了解余弦函数的对称性(余弦函数的对称性:对称中心;对称轴).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mx2+(1-3m)x-4,m∈R.

(1)当m=1时,求f(x)在区间[-2,2]上的最大值和最小值.

(2)解关于x的不等式f(x)>-1.

(3)当m<0时,若存在x0∈(1,+∞),使得f(x)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的焦点坐标是F1(﹣1,0)、F2(1,0),过点F2垂直于长轴的直线l交椭圆C于B、D两点,且|BD|=3.
(1)求椭圆C的方程;
(2)过定点P(0,2)且斜率为k的直线l与椭圆C相交于不同两点M,N,试判断:在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆、抛物线的焦点均在轴上, 的中心和的顶点均为原点,且椭圆经过点, ,抛物线过点.

Ⅰ)求的标准方程;

Ⅱ)请问是否存在直线满足条件:

①过的焦点;②与交不同两点且满足.

若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+log2x+b在区间( ,4)上有零点,则实数b的取值范围是(
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下):

(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一全年级中“体育良好”的学生人数;

(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;

(Ⅲ)假设甲、乙、丙三人的体育成绩分别为且分别在三组中,其中当数据的方差最小时,写出的值.(结论不要求证明)

(注: ,其中为数据的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比小于1的等比数列{an}的前n项和为Sn , a1= 且13a2=3S3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=nan , 求数列{bn}的前项n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为坐标原点,椭圆 的左右焦点分别为,离心率为;双曲线 的左右焦点分别为,离心率为,已知,.

(1)的方程;

(2)点作的不垂直于轴的弦, 的中点,当直线交于两点时,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)求的单调区间;

2)求[-5 ]的最大值与最小值.

查看答案和解析>>

同步练习册答案