已知等差数列{an}的前n项和为Sn,且a6=-5,S4=-62.
(1)求{an}通项公式;
(2)求数列{|an|}的前n项和Tn.
解:(1)设等差数列{a
n}的公差为d,
则由条件得
,…(3分)
解得
,…(5分)
所以{a
n}通项公式a
n=-20+3(n-1),
则a
n=3n-23…(6分)
(2)令3n-23≥0,则
,
所以,当n≤7时,a
n<0,当n≥8时,a
n>0.…(8分)
所以,当n≤7时,
=
,
当n≥8时,T
n=b
1+b
2+…+b
n=-(a
1+a
2+…+a
7)+a
8+…+a
n=-2(a
1+a
2+…+a
7)+a
1+a
2+…+a
7+a
8+…+a
n
=
,
所以
.…(12分)
分析:(1)设等差数列{a
n}的公差为d,则由条件得
,由此能求出{a
n}通项公式.
(2)令3n-23≥0,则
,所以,当n≤7时,a
n<0,当n≥8时,a
n>0.当n≤7时,
=
,当n≥8时,T
n=b
1+b
2+…+b
n=-(a
1+a
2+…+a
7)+a
8+…+a
n=-2(a
1+a
2+…+a
7)+a
1+a
2+…+a
7+a
8+…+a
n=
,由此能求出数列{|a
n|}的前n项和T
n.
点评:本题考查数列通项公式的求法和数列前n项和的求法,综合性强,难度大,计算繁琐,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化.