精英家教网 > 高中数学 > 题目详情
已知a>0,且a≠1,f(logax)=
1
a2-1
(x-
1
x
)

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)试判定函数f(x)的奇偶性与单调性;
(Ⅲ)若对于函数f(x),当θ∈R时,f(a+cos2θ)+f(4sinθ-6)<0恒成立,求实数a的取值范围.
考点:函数解析式的求解及常用方法,函数奇偶性的判断,函数恒成立问题
专题:计算题,证明题,函数的性质及应用
分析:(Ⅰ)利用换元法,令logax=t,则x=at;从而得到f(t)=
1
a2-1
(at-a-t);从而写出f(x);
(Ⅱ)先求函数f(x)=
1
a2-1
(ax-a-x)的定义域,再由定义判断奇偶性,由函数的四则运算判断函数的单调性;
(Ⅲ)由以上知,f(a+cos2θ)+f(4sinθ-6)<0可化为f(a+cos2θ)<f(6-4sinθ);即a+cos2θ<6-4sinθ;故a<6-4sinθ-cos2θ=2(sinθ-1)2+1;从而化恒成立问题为最值问题求解.
解答: 解:(Ⅰ)令logax=t,则x=at
∴f(t)=
1
a2-1
(at-a-t);
故f(x)=
1
a2-1
(ax-a-x);
(Ⅱ)f(x)=
1
a2-1
(ax-a-x)的定义域为R,
f(-x)=
1
a2-1
(a-x-ax)=-
1
a2-1
(ax-a-x)=-f(x);
故f(x)为奇函数,
当a>1时,
1
a2-1
>0,y=ax是增函数,y=-a-x是增函数;
故f(x)是增函数,
当0<a<1时,
1
a2-1
<0,y=ax是减函数,y=-a-x是减函数;
故f(x)是增函数,
故无论a取何值,f(x)是增函数;
(Ⅲ)f(a+cos2θ)+f(4sinθ-6)<0可化为
f(a+cos2θ)<f(6-4sinθ);
即a+cos2θ<6-4sinθ;
故a<6-4sinθ-cos2θ=2(sinθ-1)2+1;
∵sinθ∈[-1,1],
∴2(sinθ-1)2+1≥1;
故实数a的取值范围为(0,1).
点评:本题考查了函数的性质的应用及恒成立问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x
ex
+c(e=2.71828…,c∈R),求f(x)的单调区间及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ex-k-lnx-k<0有解,则实数k的取值范围(  )
A、k>0B、0<k<1
C、k<0或k>1D、k>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M=
a2+asinθ+1
a2+acosθ+1
(a,θ∈R,a≠0),则M的最大值与最小值分别为(  )
A、
1+
7
3
1-
7
3
B、
4+
7
3
4-
7
3
C、
9+4
2
7
9-4
2
7
D、
8+4
2
7
8-4
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为棱DD1上任意一点,F为对角线DB的中点.
(Ⅰ)求证:平面CFB1⊥平面EFB1
(Ⅱ)若三棱锥B-EFC的体积为1,且
D1E
D1D
=
3
4

①求此正方体的棱长;
②求异面直线EF与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为4的正方形ABCD与正三角形ADP所在的平面相互垂直,且M、N分别为PB、AD中点.
(1)求证:MN∥面PCD;
(2)求直线PC与平面PNB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某人在早上6:30-7:30之间把报纸送到你家,而你离开家去上学的时间在早上7:00-8:00之间,那么你离开家前能得到报纸的概率是(  )
A、
1
4
B、
3
4
C、
1
8
D、
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=4x-x4的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-2y2=1的离心率是(  )
A、
3
B、
3
2
C、
6
2
D、2

查看答案和解析>>

同步练习册答案