精英家教网 > 高中数学 > 题目详情
11.如图,点E是边长为2的正方形ABCD的CD边中点,若向正方形ABCD内随机投掷一点,则所投点落在△ABE内的概率为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 由已知求出正方形的面积及三角形ABE的面积,由测度比为面积比得答案.

解答 解:由题意,正方形ABCD的面积为4,
∵E是CD的中点,∴△ABE的面积为$\frac{1}{2}{S}_{正方形ABCD}=\frac{1}{2}×4=2$.
∴所投点落在△ABE内的概率为P=$\frac{2}{4}=\frac{1}{2}$.
故选:D.

点评 本题考查几何概型,关键是明确测度比为面积比,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线的方程为x-2y=0,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在矩形ABCD中,AB=1,BC=2,E为BC的中点,F为线段AD上的一点,且$AF=\frac{3}{2}$.现将四边形ABEF沿直线EF翻折,使翻折后的二面角A'-EF-C的余弦值为$\frac{2}{3}$.

(1)求证:A'C⊥EF;
(2)求直线A'D与平面ECDF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|cx+a|+|cx-b|,g(x)=|x-2|+c.
(1)当a=1,c=2,b=3时,解方程f(x)-4=0;
(2)当c=1,b=1时,若对任意x1∈R,都存在x2∈R,使得g(x2)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等差数列{an}中,若a2=2,a1+a5=16,则公差d等于(  )
A.4B.$\frac{14}{3}$C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$,则目标函数z=-2x+y的最大值为(  )
A.1B.-1C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),则sinα的值为$\frac{3}{5}$,cos(α+$\frac{π}{4}$)的值为$-\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:|1-$\frac{x-1}{3}$|<2;q:(x-1)2<m2; 若q是p的充分非必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=2,an+1=2an+2n+1
(Ⅰ)证明数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列;
(Ⅱ)求数列{$\frac{{a}_{n}}{n}$}的前n项和.

查看答案和解析>>

同步练习册答案