精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx+x2
(1)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;
(2)在(1)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;
(3)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

【答案】
(1)解:g(x)=f(x)﹣ax=lnx+x2﹣ax,

由题意知,g′(x)≥0,对任意的x∈(0,+∞)恒成立,即

又∵x>0, ,当且仅当 时等号成立

,可得


(2)解:由(1)知, ,令t=ex,则t∈[1,2],则

h(t)=t3﹣3at,

由h′(t)=0,得 (舍去),

,∴

,则h′(t)<0,h(t)单调递减;若 ,则h′(t)>0,h(t)单调递增

∴当 时,h(t)取得极小值,极小值为


(3)解:设F(x)在(x0,F(x0))的切线平行于x轴,其中F(x)=2lnx﹣x2﹣kx

结合题意,有

①﹣②得

所以 ,由④得

所以

,⑤式变为

所以函数 在(0,1)上单调递增,

因此,y<y|u=1=0,即 ,也就是 此式与⑤矛盾

所以F(x)在(x0,F(x0))的切线不能平行于x轴


【解析】(1)先根据题意写出:g(x)再求导数,由题意知,g′(x)≥0,x∈(0,+∞)恒成立,即 由此即可求得实数a的取值范围;(2)由(1)知 ,利用换元法令t=ex , 则t∈[1,2],则h(t)=t3﹣3at,接下来利用导数研究此函数的单调性,从而得出h(x)的极小值;(3)对于能否问题,可先假设能,即设F(x)在(x0 , F(x0))的切线平行于x轴,其中F(x)=2lnx﹣x2﹣kx结合题意,列出方程组,证得函数 在(0,1)上单调递增,最后出现矛盾,说明假设不成立,即切线不能否平行于x轴.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q﹣BP﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有1 000根某品种的棉花纤维,从中随机抽取50根,纤维长度(单位:mm)的数据分组及各组的频数见右上表,据此估计这1 000根中纤维长度不小于37.5 mm的根数是

纤维长度

频数

[22.5,25.5)

3

[25.5,28.5)

8

[28.5,31.5)

9

[31.5,34.5)

11

[34.5,37.5)

10

[37.5,40.5)

5

[40.5,43.5]

4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,椭圆C: =1(a>b>0)的长轴长为2,抛物线E:x2=2y的准线与椭圆C相切.

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于A,B两点且与抛物线E在第一象限相切于点P,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M,求 的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,切圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1 , e2(e1>e2),则e1+2e2的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,| |= ,| |=t,若P点是△ABC所在平面内一点,且 = + ,当t变化时, 的最大值等于(
A.﹣2
B.0
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aex(a≠0),g(x)=x2(Ⅰ)若曲线c1:y=f(x)与曲线c2:y=g(x)存在公切线,求a最大值.
(Ⅱ)当a=1时,F(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)内有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为 ,则p=(
A.1
B.
C.2
D.3

查看答案和解析>>

同步练习册答案