【题目】在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为4.
(1)求椭圆C的方程;
(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:的切线l,过点O且垂直于的直线l交于点A,问点A是否在椭圆C上?证明你的结论.
【答案】(1);(2)在,证明见解析.
【解析】
(1)由题意列关于a,b,c的方程,联立方程组求得,,,则椭圆方程可求;
(2)设(),当时和时,求出A的坐标,代入椭圆方程验证知,A在椭圆上,当时,求出过点O且垂直于的直线与椭圆的交点,写出该交点与P点的连线所在直线方程,由原点到直线的距离等于圆的半径说明直线是圆的切线,从而说明点A在椭圆C上.
(1)由题意得:,,又,
联立以上可得:,,.∴椭圆C的方程为;
(2)如图,由(1)可知,椭圆的类准线方程为,不妨取,
设(),则,
∴过原点且与垂直的直线方程为,
当时,过P点的圆的切线方程为,
过原点且与垂直的直线方程为,联立,解得:,
代入椭圆方程成立;
同理可得,当时,点A在椭圆上;
当时,联立,
解得,,
所在直线方程为.
此时原点O到该直线的距离,
∴说明A点在椭圆C上;同理说明另一种情况的A也在椭圆C上.
综上可得,点A在椭圆C上.
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深一丈,问积几何?”其意思为:“今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周1丈4尺,外周长2丈4尺,宽5尺;深1丈.问它的容积是多少?”则该曲池的容积为( )立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为[(2×上宽+下宽)(2×下宽+上宽)]×深)
A.B.1890C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费(万元)和年销售量(单位:)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
(万元) | 2 | 4 | 5 | 3 | 6 |
(单位:) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根据表中数据建立年销售量关于年宣传费的回归方程;
(2)已知这种产品的年利润与,的关系为,根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:问归方程中的斜率和截距的最小二乘估计公式分别为,.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为,这两个相距为的惰性气体原子组成体系的能量中有静电相互作用能,其中为静电常量,,分别表示两个原子负电中心相对各自原子核的位移,且和都远小于,当远小于1时,,则的近似值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,抛物线的焦点坐标为,点,在该抛物线上且位于轴的两侧,.
(Ⅰ)证明:直线过定点;
(Ⅱ)以,为切点作的切线,设两切线的交点为,点为圆上任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某“双一流A类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:
(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;
(2)同一组数据用该区间的中点值作代表.
(i)求这100人月薪收入的样本平均数和样本方差;
(ii)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:
方案一:设,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收到600元,月薪落在区间右侧的每人收取800元.
方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?
参考数据:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com