解:(1)f′(x)=(x
2-3x+3)•e
x+(2x-3)•e
x=x(x-1)•e
x.
由f′(x)>0?x>1或x<0;由f′(x)<0?0<x<1,
所以f(x)在(-∞,0],[1,+∞)上单调递增,在[0,1]上单调递减,
要使f(x)在[-2,t]上为单调递增函数,则-2<t≤0
(2)n>m.
因为f(x)在(-∞,0],[1,+∞)上单调递增,在[0,1]上单调递减,
所以f(x)在x=1处取极小值e.又f(-2)=
<e,
所以f(x)在[-2,+∞)上的最小值为f(-2),从而当t>-2时,f(-2)<f(t),
即m<n.
由上知,因为f(x)在(-∝,0)上递增,且恒大于0,f(x)在(0,+∞)的最小值为e,
所以函数f(x)在(-∞,+∞)上是有界函数,M=0
(3)因为
=x
2-x
0,所以
=
(t-1)
2,即为x
2-x
0=
(t-1)
2.
令g(x)=x
2-x-
(t-1)
2,从而问题转化为证明方程g(x)=x
2-x-
(t-1)
2=0
在(-2,t)上有解,并讨论解的个数.
因为g(-2)=6-
(t-1)
2=-
(t+2)(t-4),g(t)=t(t-1)-
(t-1)
2=
(t+2)(t-1),
所以①当t>4或-2<t<1时,g(-2)•g(t)<0,所以g(x)=0在(-2,t)上有解,且只有一解;
②当1<t<4时,g(-2)>0且g(t)>0,但由于g(0)=-
(t-1)
2<0,
所以g(x)=0在(-2,t)上有解,且有两解;③当t=1时,g(x)=x
2-x=0?x=0或x=1,
所以g(x)=0在(-2,t)上有且只有一解;
④当t=4时,g(x)=x
2-x-6=0?x=-2或x=3,
所以g(x)=0在(-2,4)上有且只有一解
综上所述,对于任意t>-2,总存在x
0∈(-2,t),满足
=
(t-1)
2,
且当t≥4或-2<t≤1时,有唯一的x
0符合题意;
当1<t<4时,有两个x
0符合题意.
分析:(1)对函数进行求导,令导函数大于0和令导函数小于0,求出f(x)的单调区间,进而求出t的取值范围;
(2)首先求出f(x)在x=1处取极小值e,然后得出f(-2)<e,进而可知f(-2)<f(t);
(3)先将x
0代入f'(x)求出
=x
2-x
0,然后转化成方程x
2-x-
(t-1)
2=0在(-2,t)上有解的问题,分类讨论确定x
0的个数.
点评:本题主要考查情境题的解法,在解决中要通过给出的条件转化为已有的知识和方法去解决,本题主要体现了定义法,恒成立和最值等问题,综合性强,要求学生在学习中要有恒心和毅力.