精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)求的单调区间.

)证明:当时,方程在区间上只有一个零点.

)设,其中恒成立,求的取值范围.

【答案】的单调减区间为,单调增区间为.(见解析;

【解析】试题分析:)求导得可得的单调区间.

)设 ,由()可知,上单调递增,且 ,可得证.

恒成立即函数的最小值为 ,利用导数可求得

整理可得,解得.

试题解析:)由已知

,令

的单调减区间为,单调增区间为

)设

由()可知,上单调递增,

上只有个零点,

故当,方程在区间上只有一个零点.

的定义域是

由()得,在区间上只有一个零点,

且是增函数,不妨设的零点是

则当时,

单调递减.

时,

单调递增,

函数的最小值为

,得

根据题意

,解得

故实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 .

1)当时,讨论的单调性;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1讨论的单调性;

(2)当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端OA到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m,C位于点O正东方向170 m(OC为河岸),tanBCO=.

1)求新桥BC的长;

2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cosxC2y=sin2x+),则下面结论正确的是(  )

A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·贵州适应性考试)如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD 的俯视图与正视图面积之比的最大值为(  )

A. 1 B.

C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为4,椭圆 的离心率且过抛物线的焦点.

1)求抛物线和椭圆的标准方程;

(2)过点的直线交抛物线两不同点,交轴于点已知 求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数, ,且对任意恒成立,记的前项和为.

(1)若,求的值;

(2)证明:对任意正实数 成等比数列;

(3)是否存在正实数,使得数列为等比数列.若存在,求出此时的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案