精英家教网 > 高中数学 > 题目详情
2.已知点(m,n)在双曲线8x2-3y2=24上,则2m+4的范围是m≤4-2$\sqrt{3}$,或m≥4+2$\sqrt{3}$.

分析 将(m,n)代入双曲线的标准方程,确定m的范围,从而确定2m+4的取值范围

解答 解:∵点(m,n)在双曲线8x2-3y2=24上,
∴8m2-3n2=24
∴3n2=8m2-24≥0
∴m2≥3
∴m≤-$\sqrt{3}$或m≥$\sqrt{3}$,
∴2m+4的取值范围是m≤4-2$\sqrt{3}$,或m≥4+2$\sqrt{3}$.
故答案为:m≤4-2$\sqrt{3}$,或m≥4+2$\sqrt{3}$.

点评 本题以双曲线方程为载体,考查代数式的取值范围,解题的关键是确定m的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-3|-|x+2|.
(1)若不等式f(x)≥|m-1|有解,求实数m的最小值M;
(2)在(1)的条件下,若正数a,b满足3a+b=-M,证明:$\frac{3}{b}$+$\frac{1}{a}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$的图象与x轴相交,相邻两距离为$\frac{π}{2}$,且图象上,一个最低点为M($\frac{2π}{3}$,-2).
(1)求f(x)的解析式;
(2)求函数的单调递增区间;
(3)求出函数的对称中心和对称轴方程;
(4)求f(x)的最值及此时x的集合;
(5)当x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的值域;
(6)若f(α)=1,求角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).
(1)证明:(x1-1)(x2-1)<0,且x1x2=1.
(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=-x3+2ex2-mx+lnx,若方程f(x)=x有解,则实数m的最大值是e2+$\frac{1}{e}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x-1|-|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.是否存在实数a,使得函数=-$\frac{1}{2}$cos2x+acosx+$\frac{5}{8}$a-1在闭区间[0,$\frac{π}{2}$]上的最大值是1?若存在,求出对应的a值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{3}}{3}$=1的左焦点F作直线交椭圆于A,B两点,且$\overrightarrow{BF}$=2$\overrightarrow{FA}$,则三角形0AB的面积是(0为坐标原点)$\frac{9\sqrt{5}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)为奇函数,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,方程f(x)=a(0<a<1)的所有实数根之和为(  )
A.1-2aB.2a-1C.($\frac{1}{2}$)a-1D.1-($\frac{1}{2}$)a

查看答案和解析>>

同步练习册答案