13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{12}$=1£¨a£¾2$\sqrt{3}$£©µÄ×ó½¹µãΪF£¬×󶥵ãΪA£¬$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$£¬ÆäÖÐOΪԭµã£¬eΪÍÖÔ²µÄÀëÐÄÂÊ£¬¹ýµãA×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚµãD£¬½»yÖáÓÚµãE£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãQ£¨-3£¬0£©£¬PΪÏ߶ÎADÉÏÒ»µãÇÒ|AP|=¦Ë|AD|£¬ÊÇ·ñ´æÔÚ¶¨Öµ¦ËʹµÃOP¡ÍEQºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉ$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$£¬¿ÉµÃ£º$\frac{1}{c}+\frac{1}{a}$=$\frac{3c}{a£¨a-c£©}$£¬¿ÉµÃ£ºa=2c£¬ÓÖa2=12+c2£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©´æÔÚ¶¨Öµ¦Ë=$\frac{1}{2}$ʹµÃOP¡ÍEQºã³ÉÁ¢£®ÏÂÃæ¸ø³ö·ÖÎö£ºÖ±ÏßADµÄ·½³ÌΪ£ºy=k£¨x+4£©£¬ÔòE£¨0£¬4k£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨3+4k2£©x2+32k2x+64k2-48=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¿ÉµÃ£ºD£¨$\frac{12-16{k}^{2}}{3+4{k}^{2}}$£¬$\frac{24k}{3+4{k}^{2}}$£©£¬ÀûÓÃ$\overrightarrow{AP}$=¦Ë$\overrightarrow{AD}$£¬¿ÉµÃ$\overrightarrow{OP}$=$\overrightarrow{OA}$+$¦Ë\overrightarrow{AD}$.$\overrightarrow{EQ}$=£¨-3£¬-4k£©£®¼ÙÉè$\overrightarrow{EQ}$¡Í$\overrightarrow{OP}$£¬Ôò$\overrightarrow{EQ}$•$\overrightarrow{OP}$=0£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉ$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$£¬¿ÉµÃ£º$\frac{1}{c}+\frac{1}{a}$=$\frac{3c}{a£¨a-c£©}$£¬¿ÉµÃ£ºa=2c£¬ÓÖa2=12+c2£¬½âµÃa2=16£¬c=2£®
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1£®
£¨2£©´æÔÚ¶¨Öµ¦Ë=$\frac{1}{2}$ʹµÃOP¡ÍEQºã³ÉÁ¢£®ÏÂÃæ¸ø³öÖ¤Ã÷£º
Ö±ÏßADµÄ·½³ÌΪ£ºy=k£¨x+4£©£¬ÔòE£¨0£¬4k£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x+4£©}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$£¬»¯Îª£º£¨3+4k2£©x2+32k2x+64k2-48=0£¬
¡à-4xD=$\frac{64{k}^{2}-48}{3+4{k}^{2}}$£¬½âµÃxD=$\frac{12-16{k}^{2}}{3+4{k}^{2}}$£¬¡àyD=$\frac{24k}{3+4{k}^{2}}$£¬¡àD£¨$\frac{12-16{k}^{2}}{3+4{k}^{2}}$£¬$\frac{24k}{3+4{k}^{2}}$£©£¬
¡ß$\overrightarrow{AP}$=¦Ë$\overrightarrow{AD}$£¬¿ÉµÃ$\overrightarrow{OP}$=$\overrightarrow{OA}$+$¦Ë\overrightarrow{AD}$=$£¨\frac{24¦Ë-12-16{k}^{2}}{3+4{k}^{2}}£¬\frac{24¦Ëk}{3+4{k}^{2}}£©$£®
$\overrightarrow{EQ}$=£¨-3£¬-4k£©£®
¼ÙÉè$\overrightarrow{EQ}$¡Í$\overrightarrow{OP}$£¬Ôò$\overrightarrow{EQ}$•$\overrightarrow{OP}$=$\frac{-3£¨24¦Ë-12-16{k}^{2}£©}{3+4{k}^{2}}$-$\frac{96¦Ë{k}^{2}}{3+4{k}^{2}}$=0£¬
»¯Îª£º£¨6+8k2£©¦Ë=3+4k2£¬½âµÃ¦Ë=$\frac{1}{2}$£®
Òò´Ë´æÔÚ¶¨Öµ¦Ë=$\frac{1}{2}$ʹµÃOP¡ÍEQºã³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏòÁ¿ÔËËãÐÔÖÊ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýµÄ¹Øϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®20160-log3£¨3$\frac{3}{8}$£©${\;}^{-\frac{1}{3}}}$=2-log32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬µãPÊÇÕý·½ÌåABCD-A1B1C1D1µÄÃæ¶Ô½ÇÏßBC1£¨Ï߶ÎBC1£©ÉÏÔ˶¯£¬¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÖ±ÏßADÓëÖ±ÏßB1PΪÒìÃæÖ±Ïߣ»
¢ÚA1P¡ÎƽÃæACD1£»
¢ÛÈýÀâ׶A-D1PCµÄÌå»ýΪ¶¨Öµ£»
¢ÜÃæPDB1¡ÍÃæACD1£»
¢ÝÖ±ÏßAPÓëƽÃæACD1Ëù³É½ÇµÄ´óС²»±ä£®
ÆäÖÐÕæÃüÌâµÄ±àºÅΪ¢Ù¢Ú¢Û¢Ü£®£¨Ð´³öËùÓÐÕæÃüÌâµÄ±àºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖʵÏß¼°´ÖÐéÏß»­³öµÄÊÇij¶àÃæÌåµÄÈýÊÓͼ£¬Ôò¸Ã¶àÃæÌåÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®8¦ÐB£®$\frac{25}{2}$¦ÐC£®12¦ÐD£®$\frac{41}{4}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÃüÌâp£º$\frac{1}{a}$£¾$\frac{1}{4}$£¬ÃüÌâq£º?x¡ÊR£¬ax2+1£¾0£¬Ôòp³ÉÁ¢ÊÇq³ÉÁ¢µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=x2-x|x-a|-3a£¬a£¾0£®
£¨1£©Èôa=1£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Çóº¯ÊýÔÚx¡Ê[0£¬3]ÉϵÄ×îÖµ£»
£¨3£©µ±a¡Ê£¨0£¬3£©Ê±£¬Èôº¯Êýf£¨x£©Ç¡ÓÐÁ½¸ö²»Í¬µÄÁãµãx1£¬x2£¬Çó$|{\frac{1}{x_1}-\frac{1}{x_2}}|$µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Íê³É½øλÖÆÖ®¼äµÄת»¯£»°ÑÎå½øÖÆת»¯ÎªÆß½øÖÆ412£¨5£©=212£¨7£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®µãCÔÚÏ߶ÎABÉÏ£¬ÇÒ$\frac{AC}{CB}$=$\frac{5}{2}$£¬$\overrightarrow{AC}$=¦Ë$\overrightarrow{AB}$£¬$\overrightarrow{BC}$=¦Ì$\overrightarrow{AB}$£¬Ôò¦Ë+¦Ì=$\frac{3}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÉèÓɲ»µÈʽ$\left\{\begin{array}{l}{x+y-1¡Ý0}&{\;}\\{x-y+1¡Ý0}&{\;}\\{2x-y-2¡Ü0}&{\;}\end{array}\right.$±íʾµÄƽÃæÇøÓòΪ4£¬ÈôÖ±Ïßkx-y+1=0£¨k¡ÊR£©Æ½·ÖAµÄÃæ»ý£¬ÔòʵÊýk=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸