精英家教网 > 高中数学 > 题目详情

如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。

(1).求证:EA⊥EC;
(2).设平面ECD与半圆弧的另一个交点为F。
①求证:EF//AB;
②若EF=1,求三棱锥E—ADF的体积

(1)证明过程详见解析;(2)证明过程详见解析,.

解析试题分析:本题主要考查线面的位置关系、几何体的体积等基础知识,意在考查考生的空间想象能力推理论证能力.第一问,由AB为圆的直径,得,利用面面垂直的性质得平面,再利用线面垂直的性质得到,利用线面垂直的判定得平面,最后利用线面垂直即可得到所证结论;第二问,利用线面平行的判定得∥平面,利用线面平行的性质得,再根据平行线间的传递性得,利用等体积转换法求三棱锥的体积.
试题解析:(1)∵是半圆上异于的点,∴
又∵平面平面,且
由面面垂直性质定理得平面
平面


平面
平面
   4分
(2)①由,得∥平面
又∵平面平面
∴根据线面平行的性质定理得,又
   8分
    12分
考点:线面的位置关系、几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,平面.以为邻边作平行
四边形,连接
(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.
 
(1)求证://平面
(2)求证:
(3)求与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。

(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD与四边形都为正方形,,F
为线段的中点,E为线段BC上的动点.

(1)当E为线段BC中点时,求证:平面AEF;
(2)求证:平面AEF平面;
(3)设,写出为何值时MF⊥平面AEF(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形,且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥
平面的中点.

(1)求证:∥平面
(2)求证:平面平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图②,将△ABE沿AE折起,使二面角BAEC成直二面角,连结BC、BD,F是CD的中点,P是棱BC的中点.求证:

图①图②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.

查看答案和解析>>

同步练习册答案