【题目】如图,中,,,若以,为焦点的双曲线的渐近线经过点,则该双曲线的离心率为
A. B.
C. D.
【答案】D
【解析】
设AB=BC=2,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,由余弦定理可得OC,cos∠COB,求得tan∠COB,即为渐近线的斜率,由a,b,c的关系和离心率公式,即可得到.
设AB=BC=2,
取AB的中点为O,
由题意可得双曲线的一条渐近线为直线OC,
在三角形OBC中,
cosB=﹣,
∴OC2=OB2+BC2﹣2OBBCcosB=1+4﹣2×1×2×(﹣)=7,
∴OC=,
则cos∠COB==,
可得sin∠COB==,
tan∠COB==,
可得双曲线的渐近线的斜率为,
不妨设双曲线的方程为﹣=1(a,b>0),
渐近线方程为y=±x,
可得=,
可得e=====.
故选:D.
科目:高中数学 来源: 题型:
【题目】重庆朝天门批发市场某服装店试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该服装店获得利润为W元,试写出利润与销售单价x之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A,B,C,D是直角坐标系中不同的四点,若,,且,则下列说法正确的是( ),
A.C可能是线段AB的中点
B.D可能是线段AB的中点
C.C、D可能同时在线段AB上
D.C、D不可能同时在线段AB的延长线上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(1)求课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74 ,请问哪位同学的实验更稳定?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个口袋有个白球,个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为,,,的抽屉内.
(1)求编号为的抽屉内放黑球的概率;
(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的各棱长均为2,侧面 底面,侧棱与底面所成的角为.
(Ⅰ)求直线与底面所成的角;
(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.
(1)若命题为真命题,求实数的取值范围;
(2)若命题:“”为真命题,且“”为假命题,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com