精英家教网 > 高中数学 > 题目详情
精英家教网在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.则A1B与平面ABD所成角的余弦值(  )
A、
1
2
B、
3
2
C、
7
3
D、
6
3
分析:根据题意找到线面角,进而把此角放入三角形△EBG中,利用解三角形的有关知识(正弦定理与余弦定理)解决问题即可.
解答:解:连接BG,则BG是BE在面ABD上的所以,即∠EBG是AB与平面ABD所成的角,
设F为AB中点,连接EF、FG,
∵D、E分别是CC1、A1B的中点,又DC⊥平面ABC,
∴CDEF为矩形,
连接DF,G是△ADB的重心,
∴G∈DF,在直角三角形EFD中,EF2=FG•FD=
1
3
FD2精英家教网
设侧棱AA1=2a
∴EF=a,∴FD=
3
a
于是ED=
2
a,EG=
2
3
=
6
3
a,
∵FC=ED=
2
a,
∴AB=2
2
a,A1B=2
3
a,EB=
3
a.
∴sin∠EBG=
EG
EB
=
2
3

∴cos∠EBG=
7
3

∴直线A1B与平面ABD所成角的余弦值为
7
3

故选C.
点评:解决此类问题的关键是熟悉几何体的结构特征,便于判断线面的位置关系以及解决空间角与空间距离等问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案