精英家教网 > 高中数学 > 题目详情
设函数f(x)=
ax2+bx+c
(a<0)的定义域为D,若所有点(s,f(x))(s,t∈D)构成一个正方形区域,则a的值为
 
分析:由所有的点(s,f(t))(s,t∈D)构成一个正方形区域知,函数的定义域与值域的区间长度相等,利用二次函数的最值与二次方程的根,建立a,b,c关系式,求得答案.
解答:解:设函数u=ax2+bx+c与x轴的两个交点的横坐标为:x1,x2,x1<x2
∵s为定义域的两个端点之间的部分,
就是[x1,x2]f(t)(t∈D)就是f(x)的值域,也就是[0,f(x)max],
且所有的点(s,f(t))(s,t∈D)构成一个正方形区
∴|x1-x2|=
umax

∵|x1-x2|=
2
b2-4ac
2a
=
4ac-b2
4a

b2-4ac
a2
=
4ac-b2
4a

∴a=-4
故答案为:-4
点评:本题借助二次函数及二次方程的有关性质,探讨函数的定义域和值域问题,注意二次函数的开口方向,形式比较新颖,是个中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案