【题目】已知数列{an}前n项和为Sn=﹣n2+12n.
(1)求{an}的通项公式;
(2)求数列{|an|}的前10项和T10 .
【答案】
(1)解:当n=1时,a1=S1=12×1﹣12=11;当n≥2时,an=Sn﹣Sn﹣1=(12n﹣n2)﹣[12(n﹣1)﹣(n﹣1)2]=13﹣2n.
经验证当n=1时,a1=11也符合13﹣2n的形式
(2)解:数列{an}的通项公式为an=13﹣2n,
∵当n≤6时,an>0,当n≥7时,an<0,
∴T10=a1+…+a6﹣a7﹣a8﹣a9﹣a10=2S6﹣S10=52
【解析】(1)求出a1 , 利用n≥2时,an=Sn﹣Sn﹣1 , 求出an , 验证n=1时满足通项公式,即可求得数列{an}的通项公式(2)由(1)判断哪些项为正,哪些项为负,然后求解Tn .
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知函数 (a>0,a≠1).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极点与直角坐标系原点重合,极轴与轴的正半轴重合,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)已知直线的参数方程为(为参数),直线交曲线于两点,若恰好为线段的三等分点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知离心率为的椭圆:经过点,且是顶点均不与椭圆四个顶点重合的椭圆一个内接四边形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,试判断的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,为上一点,、为椭圆的两焦点,的周长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设椭圆,曲线的切线交椭圆于、两点,试证:的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销获得,经调查测算,该产品的年销量(即该厂的年产量)万件与年促销费用万元满足(为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(成产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数,并将该厂家2016年该产品的利润万元表示为年促销费用万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com