(本小题满分13分)
在一个盒子中,放有标号分别为2,3,4的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记.
(I)求随机变量的最大值,并求事件“取得最大值”的概率;
(Ⅱ)求随机变量的分布列和数学期望.
(本小题满分13分)
解(I)∵x,y可能的取值为2、3、4,
∴,
∴,且当x=2,y=4,或x=4,y=2时,.…………………… (4分)
因此,随机变量的最大值为3.
∵有放回地抽两张卡片的所有情况有3×3=9种,
∴.
答:随机变量的最大值为3,事件“取得最大值”的概率为. ……………(6分)
(II) 的所有取值为0,1,2,3.…………………… (7分)
∵=0时,只有x=3,y=3这一种情况,
=1时,有x=2,y=2或x=3,y=2或x=3,y=4或x=4,y=4四种情况,
=3时,有x=2,y=3或x=4,y=3两种情况.
∴,,………………………………(11分)
则随机变量的分布列为:
| 0 | 1 | 2 | 3 |
P |
|
|
|
|
因此,数学期望.…………………….(13分)
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com