精英家教网 > 高中数学 > 题目详情

【题目】已知复数z=(m2+5m﹣6)+(m2﹣2m﹣15)i,(i为虚数单位,m∈R)
(1)若复数Z在复平面内对应的点位于第一、三象限的角平分线上,求实数M的值;
(2)当实数m=﹣1时,求 的值.

【答案】
(1)解:因为复数z所对应的点在一、三象限的角平分线上,

所以m2+5m+6=m2﹣2m﹣15,

解得m=﹣3


(2)解:当实数m=﹣1时,z=(1﹣5+6)+(1+2﹣15)i=2﹣12i.

所以 的值为


【解析】(1)因为复数z所对应的点在一、三象限的角平分线上,可得m2+5m+6=m2﹣2m﹣15,解得m.(2)当实数m=﹣1时,z=(1﹣5+6)+(1+2﹣15)i=2﹣12i.再利用复数的运算法则、模的计算公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题 :直线 与抛物线 )没有交点;已知命题 :方程 表示双曲线;若 为真, 为假,试求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)判断函数的奇偶性,并予以证明;

2时求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆的直径, 垂直圆所在的平面, 是圆上的点.

(1)求证: 平面

(2)设的中点, 的重心,求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的边上的高所在直线方程分别为 顶点边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点及圆.

(1)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;

(2)设直线与圆交于两点,是否存在实数使得过点的直线垂直平分弦若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是

用宽(单位)表示所建造的每间熊猫居室的面积(单位);

怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲、乙是边长为的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积).

(1)将你的裁剪方法用虚线标示在图中,并作简要说明;

(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案