精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)判断方程内的解的个数,并加以证明.

【答案】(1);(2)方程上有3个解;证明见解析。

【解析】

(1)根据直线的切线方程,可得斜率即过的定点坐标,对函数求导,代入横坐标即可求得参数a;将横坐标带入原函数即可求得b,即得解析式。

(2)求导,并可知根据零点存在定理及单调性可知在上只有一个零点。同理,讨论在各区间的端点符号及单调性即可判断零点情况。

(1)直线的斜率为,过点

,则,即

所以

(2)方程上有3个解

证明:令

所以上至少有一个零点

上单调递减,故在上只有一个零点,

时,,故

所以函数上无零点.

时,令

所以上单调递增,

所以,使得上单调递增,在上单调递减.

,所以函数上有2个零点.

综上,方程上有3个解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个圆周上有9个点,以这9个点为顶点作3个三角形.当这3个三角形无公共顶点且边互不相交时,我们把它称为一种构图.满足这样条件的构图共有( )种.

A. 3 B. 6 C. 9 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王府井百货分店今年春节期间,消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对春节前7天参加抽奖活动的人数进行统计, 表示第天参加抽奖活动的人数,得到统计表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

经过进一步统计分析,发现具有线性相关关系.

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)判断变量之间是正相关还是负相关;

(3)若该活动只持续10天,估计共有多少名顾客参加抽奖.

参与公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为.

1)求2个人都译出密码的概率;

2)求2个人都译不出密码的概率;

3)求至多1个人都译出密码的概率;

4)求至少1个人都译出密码的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,原文是:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之. 翻译为现代的语言如下:如果需要对分数进行约分,那么可以折半的话,就折半(也就是用2来约分).如果不可以折半的话,那么就比较分母和分子的大小,用大数减去小数,互相减来减去,一直到减数与差相等为止,用这个相等的数字来约分,现给出“更相减损术”的程序框图如图所示,如果输入的,则输出的( )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC所对边分别为abc,且2acosC=2b-c

1)求角A的大小;

2)若AB=3AC边上的中线SD的长为,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设函数,若有两个零点.

i)求的取值范围;

ii)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点分别是线段的中点.

1)求证:平面

2)在线段上有一点,若二面角的余弦值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将下列问题的解答过程补充完整.

依次计算数列的前四项的值,由此猜测的有限项的表达式,并用数学归纳法加以证明.

解:计算

由此猜想 .(*

下面用数学归纳法证明这一猜想.

i)当时,左边,右边,所以等式成立.

(ⅱ)假设当时,等式成立,即

那么,当时,

等式也成立.

根据(i)和(ⅱ)可以断定,(*)式对任何都成立.

查看答案和解析>>

同步练习册答案