ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=2tcos¦È
y=2sin¦È
£¨tΪ·ÇÁã³£Êý£¬¦ÈΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ¦Ñsin£¨¦È-
¦Ð
4
£©=2
2
£®
£¨¢ñ£©ÇóÇúÏßCµÄÆÕͨ·½³Ì²¢ËµÃ÷ÇúÏßµÄÐÎ×´£»
£¨¢ò£©ÊÇ·ñ´æÔÚʵÊýt£¬Ê¹µÃÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬µÄ¹«¹²µãA¡¢B£¬ÇÒ
OA
OB
=10
£¨ÆäÖÐOΪ×ø±êÔ­µã£©£¿Èô´æÔÚ£¬ÇëÇó³ö£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ñ£©¡ßt¡Ù0£¬¡à¿É½«ÇúÏßCµÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£º
x2
t2
+y2=4£®¡­£¨2·Ö£©
¢Ùt=¡À1ʱ£¬ÇúÏßCΪԲÐÄÔÚÔ­µã£¬°ë¾¶Îª2µÄÔ²£»              ¡­£¨4·Ö£©
¢Úµ±t¡Ù¡À1ʱ£¬ÇúÏßCΪÖÐÐÄÔÚÔ­µãµÄÍÖÔ²£®¡­£¨6·Ö£©
£¨¢ò£©Ö±ÏßlµÄÆÕͨ·½³ÌΪ£ºx-y+4=0£®¡­£¨8·Ö£©
ÁªÁ¢Ö±ÏßÓëÇúÏߵķ½³Ì£¬ÏûyµÃ
x2
t2
+£¨x+4£©2=4£¬»¯¼òµÃ£¨1+t2£©x2+8t2x+12t2=0£®
ÈôÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬Ôò¡÷=64t4-4£¨1+t2£©•12t2£¾0£¬½âµÃt2£¾3
ÓÖx1+x2=-
8t2
1+t2
£¬x1x2=
12t2
1+t2
£¬¡­£¨                   ¡­£¨10·Ö£©
¹Ê
OA
OB
=x1x2+y1y2=x1x2+£¨x1+4£©£¨x2+4£©=2x1x2+4£¨x1+x2£©+16=10£®
½âµÃt2=3Óët2£¾3Ïàì¶Ü£® ¹Ê²»´æÔÚÂú×ãÌâÒâµÄʵÊýt£®¡­£¨12·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ºÚÁú½­Ò»Ä££©ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=2cos¦È
y=
3
sin¦È
£¨¦ÈΪ²ÎÊý£©£¬¶¨µãA(0£¬-
3
)
£¬F1£¬F2ÊÇԲ׶ÇúÏßCµÄ×ó£¬ÓÒ½¹µã£®
£¨1£©ÒÔÔ­µãΪ¼«µã¡¢xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¾­¹ýµãF1ÇÒƽÐÐÓÚÖ±ÏßAF2µÄÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÔÚ£¨I£©µÄÌõ¼þÏ£¬ÉèÖ±ÏßlÓëԲ׶ÇúÏßC½»ÓÚE£¬FÁ½µã£¬ÇóÏÒEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=|x-2|+|x-4|µÄ×îСֵΪm£¬ÊµÊýa£¬b£¬c£¬n£¬p£¬q
Âú×ãa2+b2+c2=n2+p2+q2=m£®
£¨¢ñ£©ÇómµÄÖµ£»     £¨¢ò£©ÇóÖ¤£º
n4
a2
+
p4
b2
+
q4
c2
¡Ý2
£®
£¨2£©ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=2tcos¦È
y=2sin¦È
£¨tΪ·ÇÁã³£Êý£¬¦ÈΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ¦Ñsin(¦È-
¦Ð
4
)=2
2
£®
£¨¢ñ£©ÇóÇúÏßCµÄÆÕͨ·½³Ì²¢ËµÃ÷ÇúÏßµÄÐÎ×´£»
£¨¢ò£©ÊÇ·ñ´æÔÚʵÊýt£¬Ê¹µÃÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬µÄ¹«¹²µãA¡¢B£¬ÇÒ
OA
OB
=10
£¨ÆäÖÐOΪ×ø±êÔ­µã£©£¿Èô´æÔÚ£¬ÇëÇó³ö£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖª¾ØÕóA=
a2
1b
ÓÐÒ»¸öÊôÓÚÌØÕ÷Öµ1µÄÌØÕ÷ÏòÁ¿
¦Á
=
2
-1
£¬
¢ÙÇó¾ØÕóA£»
¢ÚÒÑÖª¾ØÕóB=
1-1
01
£¬µãO£¨0£¬0£©£¬M£¨2£¬-1£©£¬N£¨0£¬2£©£¬Çó¡÷OMNÔÚ¾ØÕóABµÄ¶ÔÓ¦±ä»»×÷ÓÃÏÂËùµÃµ½µÄ¡÷O'M'N'µÄÃæ»ý£®
£¨2£©ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=t-3
y=
3
 t
£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñco s¦È+3=0£®
¢ÙÇóÖ±ÏßlÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
¢ÚÉèµãPÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄÈ¡Öµ·¶Î§£®
£¨3£©ÒÑÖªº¯Êýf£¨x£©=|x-1|+|x+1|£®
¢ÙÇó²»µÈʽf£¨x£©¡Ý3µÄ½â¼¯£»
¢ÚÈô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ýa2-aÔÚRÉϺã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ö£ÖÝһģ£©ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=2+2cos¦È
y=2sin¦È
Ϊ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö± ÏßlµÄ·½³ÌΪ¦Ñsin(¦È+
¦Ð
4
)=2
2

£¨I£©ÇóÇúÏßCÔÚ¼«×ø±êϵÖеķ½³Ì£»
£¨II£©ÇóÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=t-3
y=
3
t
£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È+3=0£®
¢ÙÇóÖ±ÏßlÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
¢ÚÉèµãPÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßLµÄ¾àÀëµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸