精英家教网 > 高中数学 > 题目详情
4.数列{an}的前n项的和为Sn,对于任意的自然数an>0,4Sn=(an+1)2
(Ⅰ)求a1的值;
(Ⅱ)求证:数列{an}是等差数列,并求通项公式;
(Ⅲ)设bn=$\frac{{a}_{n}}{{3}^{n}}$,求和Tn=b1+b2+…+bn

分析 (Ⅰ)令n=1,代入4Sn=(an+1)2求解即可;
(Ⅱ)由4Sn=(an+1)2化简可得(an+1+an)(an+1-an-2)=0,从而可得an+1-an=2,从而解得;
(Ⅲ)由bn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n-1}{{3}^{n}}$,利用错位相减法求解即可.

解答 解:(Ⅰ)令n=1,4S1=(a1+1)2
解得,a1=1;
(Ⅱ)∵4Sn=(an+1)2
∴4Sn+1=(an+1+1)2
相减可得,
4an+1=(an+1+1)2-(an+1)2
∴(an+1+an)(an+1-an-2)=0,
∵an>0,∴an+1-an=2,
∴{an}是等差数列,
∴an=1+2(n-1)=2n-1;
(Ⅲ)bn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n-1}{{3}^{n}}$,
Tn=b1+b2+…+bn=$\frac{1}{3}$+$\frac{3}{{3}^{2}}$+$\frac{5}{{3}^{3}}$+…+$\frac{2n-1}{{3}^{n}}$,
$\frac{1}{3}$Tn=$\frac{1}{{3}^{2}}$+$\frac{3}{{3}^{3}}$+$\frac{5}{{3}^{4}}$+…+$\frac{2n-1}{{3}^{n+1}}$,
 相减可得,
$\frac{2}{3}$Tn=$\frac{1}{3}$+2($\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)-$\frac{2n-1}{{3}^{n+1}}$
=$\frac{1}{3}$+2$\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-$\frac{2n-1}{{3}^{n+1}}$
=$\frac{2}{3}$-$\frac{2n+2}{{3}^{n+1}}$,
故Tn=1-$\frac{n+1}{{3}^{n}}$.

点评 本题考查了等比数列与等差数列的应用,同时考查了错位相减法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知正方形ABCD的边长为6,E为BC的 中点,则$\overrightarrow{AE}•\overrightarrow{BD}$=-18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,∠ACB为钝角,AB=2,BC=$\sqrt{2}$,A=$\frac{π}{6}$,D为AC延长线上一点,且CD=$\sqrt{3}+1$.
(Ⅰ)求∠BCD的大小;
(Ⅱ)求BD,AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
(1)$\root{4}{{{{({\sqrt{5}-4})}^4}}}+\root{3}{{{{({\sqrt{5}-4})}^3}}}+{2^{-2}}×{({2\frac{1}{4}})^{-\frac{1}{2}}}-{({0.01})^{0.5}}$
(2)$\frac{{\root{3}{{{a^{\frac{9}{2}}}\sqrt{{a^{-3}}}}}}}{{\sqrt{\root{3}{{{a^{-7}}}}•\root{3}{{{a^{13}}}}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(x)=x2-4x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足a1=19,an+1=an-2(n∈N*),则当数列{an}的前n项和Sn取得最大值时,n的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(3,m)$,若$(2\overrightarrow a-\overrightarrow b)$与$\overrightarrow b$平行,则m的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函数.
(Ⅰ)确定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零点,求a的取值范围;
(Ⅲ)若对任意的t∈(1,4),不等式f(2t-3)+f(t-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的体积与球O的体积的比值为$\frac{9}{32}$.

查看答案和解析>>

同步练习册答案