【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.
【答案】
(1)解:当a=2时,圆C的直角坐标方程为x2+y2=2y,即x2+(y﹣1)2=1.∴圆C的圆心坐标为C(0,1),半径r=1.
令y= =0得t=0,把t=0代入x=﹣ 得x=2.∴M(2,0).
∴|MC|= = .∴|MN|的最大值为|MC|+r=
(2)解:由ρ=asinθ得ρ2=aρsinθ,∴圆C的直角坐标方程是x2+y2=ay,即x2+(y﹣ )2= .
∴圆C的圆心为C(0, ),半径为| |,
直线l的普通方程为4x+3y﹣8=0.
∵直线l被圆C截得的弦长等于圆C的半径的 倍,
∴圆心C到直线l的距离为圆C半径的一半.
∴ =| |,解得a=32或a=
【解析】(1)求出圆C的圆心和半径,M点坐标,则|MN|的最大值为|MC|+r;(2)由垂径定理可知圆心到直线l的距离为半径的 ,列出方程解出.
科目:高中数学 来源: 题型:
【题目】某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )
A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为椭圆上一点,过点作轴的垂线,垂足为.取点,连接,过点作的垂线交轴于点.点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆一定有唯一的公共点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,双曲线 =1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com