精英家教网 > 高中数学 > 题目详情

【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图:

(Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明

(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2020年我国生活垃圾无害化处理量

附注:

参考数据:

参考公式:相关系数,回归方程中斜率和截距最小二乘估计公式分别为

【答案】(Ⅰ)yt的相关系数近似为0.99,说明yt的线性相关程度相当高,从而可以用线性回归模型拟合yt的关系;

(Ⅱ)y关于t的回归方程为,预测2020年我国生活垃圾无害化处理量将约为2.22亿吨.

【解析】

(Ⅰ)根据题意求出,,的值再代入即可。

(Ⅱ)代入数据计算出,即可得,再计算当时的值即可。

(Ⅰ)由折线图中数据和附注中参考数据得

因为yt的相关系数近似为0.99,说明yt的线性相关程度相当高,从而可以用线性回归模型拟合yt的关系.

(Ⅱ)由及(Ⅰ)得

所以y关于t的回归方程为

2020年对应的代入回归方程得

所以预测2020年我国生活垃圾无害化处理量将约为2.22亿吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若方程在区间内有个不同的实数解,则实数的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

【答案】I;(II.

【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.

试题解析:(Ⅰ)由,得,即

所以曲线的极坐标方程为

II)将的参数方程代入,得

, 所以,又

所以,且,

所以,

,得,所以.

的取值范围是.

型】解答
束】
23

【题目】已知均为正实数.

(Ⅰ)若,求证:

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:

不常喝

2

不肥胖

18

30

已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为

(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?

独立性检验临界值表:

P(K2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,动点两点连线的斜率满足.

(1)求动点的轨迹的方程;

(2)是曲线轴正半轴的交点,曲线上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆C上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆CBD两点,且ABD三点互不重合.

1)求椭圆C的方程;

2)若分别为直线ABAD的斜率,求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条异面直线,直线都垂直,则下列说法正确的是( )

A. 平面,则

B. 平面,则,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

同步练习册答案