精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;

(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).

【答案】(1);(2)见解析

【解析】试题分析:1求出函数的导函数通过恒成立推出即可求出的范围;(2利用化简通过函数处的切线方程为讨论当 利用分析法证明;构造函数 求出构造新函数利用公式的导数求解函数的最值然后推出结论.

试题解析:(1)解 易知f ′(x)=-

由已知得f ′(x)≥0对x∈(-∞,2)恒成立,

故x≤1-a对x∈(-∞,2)恒成立,∴1-a≥2,∴a≤-1.

即实数a的取值范围为(-∞,-1].

(2)证明 a=0,则f (x)=.

函数f (x)的图象在x=x0处的切线方程为y=g(x)=f′(x0)(x-x0)+f (x0).

令h(x)=f (x)-g(x)=f (x)-f ′(x0)(x-x0)-f (x0),x∈R,

则h′(x)=f ′(x)-f ′(x0)=.

设φ(x)=(1-x)ex0-(1-x0)ex,x∈R,

则φ′(x)=-ex0-(1-x0)ex,∵x0<1,∴φ′(x)<0,

∴φ(x)在R上单调递减,而φ(x0)=0,

∴当x<x0时,φ(x)>0,当x>x0时,φ(x)<0,

∴当x<x0时,h′(x)>0,当x>x0时,h′(x)<0,

∴h(x)在区间(-∞,x0)上为增函数,在区间(x0,+∞)上为减函数,

∴x∈R时,h(x)≤h(x0)=0,

∴f (x)≤g(x).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500.

1)设一次订购量为x件,服装的实际出厂单价为P元,写出函数的表达式;

2)当销售商一次订购450件服装时,该服装厂获得的利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)任何有理数都是实数;

(2)存在一个实数,能使成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5cm为单位长度作单位圆,分别作出,,,,角的正弦线余弦线和正切线,量出它们的长度,写出这些角的正弦余弦和正切的近似值,再使用科学计算器求这些角的正弦余弦和正切,并进行比较.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若只有一个零点,求

(2)当时,对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(题文)已知椭圆的离心率为,过右焦点且斜率为1的直线交椭圆A,B两点, N为弦AB的中点,O为坐标原点.

(1)求直线ON的斜率

(2)求证:对于椭圆上的任意一点M,都存在,使得成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的极坐标方程为,曲线的参数方程为为参数)

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

)若过且与直线垂直的直线与曲线相交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,.

Ⅰ)求椭圆的方程;

Ⅱ)是否存在定点使得为定值?若存在,求出点坐标并求出此定值;若不存在,说明理由.

【答案】(Ⅰ).

【解析】试题分析:(1)当轴重合时,垂直于轴,得,,从而得椭圆的方程;(2)由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,所以把坐标化,可得点的轨迹是椭圆,从而求得定点和点.

试题解析:轴重合时,, ,所以垂直于轴,得, ,椭圆的方程为.

焦点坐标分别为, 当直线斜率不存在时,点坐标为;

当直线斜率存在时,设斜率分别为, , 得:

, 所以:, 则:

. 同理:, 因为

, 所以, , 由题意知, 所以

, 设,则,即,由当直线斜率不存在时,点坐标为也满足此方程,所以点在椭圆.存在点和点,使得为定值,定值为.

考点:圆锥曲线的定义,性质,方程.

【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量,得,,从而得椭圆的方程,第二问由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把坐标化,求得点的轨迹方程是椭圆,从而求得存在两定点和点.

型】解答
束】
21

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是底面边长为1的正三棱锥,分别为棱长上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)证明:为正四面体;

(2)若,求二面角的大小;(结果用反三角函数值表示)

(3)设棱台的体积为,是否存在体积为且各棱长均相等的直平行六面体,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥的体积减去棱锥的体积.)

查看答案和解析>>

同步练习册答案