精英家教网 > 高中数学 > 题目详情
5.在△ABC中,A,B,C所对的边分别是a,b,c,A=$\frac{2π}{3}$,且bcosC=3ccosB,则$\frac{b}{c}$的值为(  )
A.$\frac{\sqrt{13}-1}{2}$B.$\frac{1+\sqrt{13}}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{14}}{2}$

分析 利用余弦定理将角化边整理得出a,b,c的关系,再使用余弦定理消去a,得到关于b,c的方程,即可解出$\frac{b}{c}$的值.

解答 解:△ABC中,A=$\frac{2π}{3}$,且bcosC=3ccosB,
∴b×$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=3c×$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$,
即a2=2b2-2c2
又cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=-$\frac{1}{2}$,
∴b2+c2-a2+bc=0,
∴3c2-b2+bc=0,
即-($\frac{b}{c}$)2+$\frac{b}{c}$+3=0,
解得$\frac{b}{c}$=$\frac{\sqrt{13}+1}{2}$或$\frac{-\sqrt{13}+1}{2}$(不合题意,舍去),
即$\frac{b}{c}$的值为$\frac{1+\sqrt{13}}{2}$.
故选:B.

点评 本题考查了三角函数的恒等变换以及余弦定理和一元二次方程的解法问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x-1-lnx,对定义域内任意x都有f(x)≥kx-2,则实数k的取值范围是(  )
A.(-∞,1-$\frac{1}{{e}^{2}}$]B.(-∞,-$\frac{1}{{e}^{2}}$]C.[-$\frac{1}{{e}^{2}}$,+∞)D.[1-$\frac{1}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知复数z满足(1+i)z=1-3i(i是虚数单位)
(1)求复数z的虚部;
(2)若复数(1+ai)z是纯虚数,求实数a的值;
(3)若复数z的共轭复数为$\overline{z}$,求复数$\frac{\overline{z}}{z+1}$的模.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设定义在R上的函数f(x)是最小正周期为$\frac{π}{2}$的偶函数,f′(x)是f(x)的导函数,当$x∈[0,\frac{π}{2}]$时,0<f(x)<1,当x∈(0,$\frac{π}{2}$)且x≠$\frac{π}{4}$时,(x-$\frac{π}{4}$)f'(x)<0,则方程f(x)=cos2x在[-2π,2π]上的根的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(Ⅰ)证明数{an-2n}是等差数列,并求{an}的通项公式;
(Ⅱ)设bn=an-3n,求bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不同的两点A,B到平面α的距离相等,则下列命题中一定正确的是(  )
A.A,B两点在平面α的同侧B.A,B两点在平面α的异侧
C.过A,B两点必有垂直于平面α的平面D.过A,B两点必有平行于平面α的平面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.当x∈(0,+∞)时,不等式c2x2-(cx+1)lnx+cx≥0恒成立,则实数c的取值范围是[$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设某项试验的成功率是失败率的2倍,用随机变量Y描述1次试验的成功次数,则D(Y)=$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{|x|-2}$.
(1)在坐标系内作出该函数的大致图象,并写出函数的单调递增区间;
(2)若方程f(x)-k=0恰有一个实数根,求实数k的值.

查看答案和解析>>

同步练习册答案