精英家教网 > 高中数学 > 题目详情
18.已知点P(2,-1).
(1)若一条直线经过点P,且原点到直线的距离为2,求该直线的一般式方程;
(2)求过点P且与原点距离最大的直线的一般式方程,并求出最大距离是多少?

分析 (1)当l的斜率k不存在时,直接写出直线方程;当l的斜率k存在时,设l:y+1=k(x-2),即kx-y-2k-1=0.由点到直线的距离公式求得k值,则直线方程可求;
(2)由题意可得过P点与原点O距离最大的直线是过P点且与PO垂直的直线,求出OP所在直线的斜率,进一步得到直线l的斜率,得到直线l的方程,再由点到直线的距离公式得最大距离.

解答 解:(1)①当l的斜率k不存在时,l的方程为x=2; 
②当l的斜率k存在时,设l:y+1=k(x-2),即kx-y-2k-1=0.
由点到直线距离公式得$\frac{{|{-2k-1}|}}{{\sqrt{1+{k^2}}}}=2$,得l:3x-4y-10=0.
故所求l的方程为:x=2  或  3x-4y-10=0;
(2)由题意可得过P点与原点O距离最大的直线是过P点且与PO垂直的直线,
由l⊥OP,得klkOP=-1,kl=$-\frac{1}{{{k_{op}}}}=2$,
由直线方程的点斜式得y+1=2(x-2),即2x-y-5=0.
即直线2x-y-5=0是过P点且与原点O距离最大的直线,最大距离为 $\frac{{|{-5}|}}{{\sqrt{5}}}=\sqrt{5}$.

点评 本题考查直线的点斜式方程,考查点到直线的距离公式的应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆的标准方程为:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{3{a}^{2}}$=1(a>0)
(1)当a=1时,求椭圆的焦点坐标及椭圆的离心率;
(2)过椭圆的右焦点F2的直线与圆C:x2+y2=4a2(常数a>0)交于A,B两点,求|F2A|•|F2B|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简求值.
(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$
(2)(lg2)2+lg20×lg5+log92•log43.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左右焦点分别为F1,F2,点P 在椭圆上运动,$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值为m,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,若f(-1)=0,则不等式f(2x-1)>0解集为( B  )(  )
A.(-6,0)∪(1,3)B.(-∞,0)∪(1,+∞)C.(-∞,1)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等边三角形的边长为a,P是△ABC所在平面上的一点,求|PA|2+|PB|2+|PC|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知以点C(t,$\frac{2}{t}$)(t∈R且t≠0)为圆心的圆经过原点O,且与x轴交于点A,与y轴交于点B.
(1)求证:△AOB的面积为定值.
(2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\left\{\begin{array}{l}0,(x>0)\\ π,(x=0)\\ 1,(x<0)\end{array}\right.$,则f(f(f(π)))=(  )
A.1B.0C.πD.π+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合P={y|y=($\frac{1}{2}$)x,x>0},Q={x|y=lg(2x-x2)},则∁RP∩Q=(  )
A.[1,2)B.(1,+∞)C.[2,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案