精英家教网 > 高中数学 > 题目详情
3.由0、1、2、3、4、5组成没有重复数字的三位偶数有(  )
A.720个B.600个C.60个D.52个

分析 分两类,第一类,个位为0,第二类,个位是2或4,再利用分步计数原理求出每一类有多少个,然后相加.

解答 解:分两类,第一类,个位为0,有${A}_{5}^{2}$=20个;
第二类,个位是2或4,有${C}_{2}^{1}$×${C}_{4}^{1}$×${C}_{4}^{1}$=32个,
∴可组成没有重复数字的三位偶数有20+32=52个,
故选:D

点评 本题考查了分类、分步计数原理,考查了组合数公式,分类要不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.抛物线C:y2=2x的准线方程是x=-$\frac{1}{2}$,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则$|{\overrightarrow{AF}}|+|{\overrightarrow{BF}}|$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意实数x,y满足:f(2)=2,f(xy)=xf(y)+yf(x),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),考查下列结论:
①f(1)=1;②f(x)为奇函数;③数列{an}为等差数列;④数列{bn}为等比数列.
以上命题正确的是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b∈[0,2],则方程x2+$\sqrt{a}x+\frac{b}{2}$=0有实数解的概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a<b<0,则(  )
A.a2<ab<b2B.ac<bcC.$\frac{1}{a}>\frac{1}{b}$D.$\frac{a}{c^2}>\frac{b}{c^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)由下表定义:
x25314
f(x)12345
若a0=1,an+1=f(an),n=0,1,2,…,则a2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在以O为圆心,1为半径的圆上均匀、依次分布有六点,分别记为:A、B、C、D、E、F.
(1)点P是圆O上运动的任意一点,试求|PA|≥1的概率;
(2)在A、B、C、D、E、F六点中选择不同的三点构成三角形,其面积记为S,试求S=$\frac{{\sqrt{3}}}{2}$和S=$\frac{{\sqrt{3}}}{4}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3.即函数y=[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么[log31]+[log32]+[log33]+…+[log326]的值为(  )
A.38B.40C.42D.44

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={log2a,3},B={a,b},若A∩B={0},则A∪B=(  )
A.{0,3}B.{0,1,3}C.{0,2,3}D.{0,1,2,3}

查看答案和解析>>

同步练习册答案