精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|x=m2-n2,m、n∈Z}
(1)判断8,9,10是否属于集合A;
(2)已知集合B={x|x=2k+1,k∈Z},证明:“x∈A”的充分非必要条件是“x∈B”;
(3)写出所有满足集合A的偶数.

分析 (1)将x=8,9,10分别代入关系式x=m2-n2,若满足关系式,则属于A,若不满足关系式,则不属于A,即可得答案,
(2)根据已知中集合A的定义,根据集合元素与集合关系的判断,我们推证奇数x∈A可得答案.
(3)m2-n2=(m+n)(m-n)成立,当m,n同奇或同偶时,m-n,m+n均为偶数;当m,n一奇,一偶时,m-n,m+n均为奇数.由此能求出所有满足集合A的偶数.

解答 解:(1)∵8=32-1,9=52-42,∴8∈A,9∈A,
假设10=m2-n2,m,n∈Z,则(|m|+|n|)(|m|-|n|)=10,且|m|+|n|>|m|-|n|>0,
∵10=1×10=2×5,
∴$\left\{\begin{array}{l}{|m|+|n|=10}\\{|m|-|n|=1}\end{array}\right.$或$\left\{\begin{array}{l}{|m|+|n|=5}\\{|m|-|n|=2}\end{array}\right.$,
显然均无整数解,
∴10∉M,
∴8∈A,9∈A,10∉A,
(2)∵集合B={x|x=2k+1,k∈Z},则恒有2k+1=(k+1)2-k2
∴2k+1∈A,
∴即一切奇数都属于A,
又∵8∈A,
∴x∈A”的充分非必要条件是“x∈B”,
(3)集合A={x|x=m2-n2,m、n∈Z},
m2-n2=(m+n)(m-n)成立,①当m,n同奇或同偶时,m-n,m+n均为偶数,
(m-n)(m+n)为4的倍数,
②当m,n一奇,一偶时,m-n,m+n均为奇数,
∴(m-n)(m+n)为奇数,
综上所有满足集合A的偶数为4k,k∈Z.

点评 本小题主要考查元素与集合关系的判断、奇数等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知二面角A-BC-D,A-CD-B,A-BD-C的平面角都相等,则点A在平面BCD上的射影是△BCD的(  )
A.内心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)满足$2f({\frac{x-1}{x}})+f({\frac{x+1}{x}})=1+x$,其中x∈R且x≠0,则函数f(x)的解析式为f(x)=$\frac{1}{3}$-$\frac{1}{x-1}$(x≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=ax2+(a-1)x+a.
(1)试讨论函数y=f(x)的奇偶性,并说明理由;
(2)若函数$g(x)=f(x)+\frac{{1-({a-1}){x^2}}}{x}$在(2,3)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知全集U=R,集合$A=\left\{{x\left|{\frac{x+2}{x}<0}\right.}\right\}$,则集合∁UA={x|x≥0或x≤-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于定义域分别为Df、Dg的函数f(x)、g(x),规定:$h(x)=\left\{\begin{array}{l}f(x)•g(x)\;\;\;当x∈{D_f}且x∈{D_g}时\\ f(x)\;\;\;\;\;\;\;\;\;\;\;\;当x∈{D_f}且x∉{D_g}时\\ g(x)\;\;\;\;\;\;\;\;\;\;\;\;当x∉{D_f}且x∈{D_g}时\end{array}\right.$
(1)设$f(x)=\frac{1}{x}\;,\;\;g(x)=4{x^2}+1$,写出h(x)的解析式.
(2)求(1)中函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知空间中点A(x,1,2)和点B(2,3,4),且$|{AB}|=2\sqrt{6}$,则实数x的值是(  )
A.6或-2B.-6或2C.3或-4D.-3或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线y=x+b与椭圆$\frac{{x}^{2}}{2}$+y2=1相交于A,B两个不同的点.
(1)求实数b的取值范围;
(2)已知弦AB的中点P的横坐标是$-\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列语句:
①若a,b∈R+,a≠b,则a3+b3>a2b+ab2
②若a,b,m∈R+,a<b,则$\frac{a+m}{b+m}$<$\frac{a}{b}$;
③命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x2≠1.
④当x∈(0,$\frac{π}{2}$)时,sin x+$\frac{2}{sinx}$的最小值为2$\sqrt{2}$,
其中结论正确的序号为①③(填入所有正确的序号).

查看答案和解析>>

同步练习册答案