如图所示,在直三棱柱中,,为的中点.
(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.
(I)通过证明“线线垂直”,得到“线面垂直”,⊥面,得到.
又在直棱柱中,,得到⊥平面.
(II)三棱锥的体积.
解析试题分析:(I)(I)通过证明“线线垂直”,得到“线面垂直”,⊥面,得到.
又在直棱柱中,,得到⊥平面.
(II)为确定三棱锥的体积,应注意明确“底面”“高”,注意遵循“一作,二证,三计算”的解题步骤.通过证明“平面”.明确就是三棱锥的高.
解答此类问题,容易出现的错误是忽视证明,利用直观感觉确定高.
试题解析:(I)直三棱柱中,∵,∴四边形为正方形,
∴,
又∵面,∴,∴⊥面,∴.
又在直棱柱中,,∴B1C1⊥平面ABB1A1.
(II)∵,为的中点,∴.
∴平面.
∴就是三棱锥的高.
由(I)知B1C1⊥平面ABB1A1,∴平面ABB1A1.
∴.∴是直角等腰三角形.
又∵,∴,
∴,
∴三棱锥的体积.
考点:垂直关系、体积计算.
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥平面,底面为直角梯形,,且,.
(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当面,且,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,△中,,,,在三角形内挖去一个半圆(圆心在边上,半圆与、分别相切于点、,与交于点),将△绕直线旋转一周得到一个旋转体。
(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.
(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求证:BD⊥AA1;
若四边形是菱形,且,求四棱柱的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅱ)求四棱锥P-ABCD的体积V.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com