精英家教网 > 高中数学 > 题目详情

如图所示,在直三棱柱中,的中点.

(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1
(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.

(I)通过证明“线线垂直”,得到“线面垂直”,⊥面,得到
又在直棱柱中,,得到⊥平面
(II)三棱锥的体积.

解析试题分析:(I)(I)通过证明“线线垂直”,得到“线面垂直”,⊥面,得到
又在直棱柱中,,得到⊥平面
(II)为确定三棱锥的体积,应注意明确“底面”“高”,注意遵循“一作,二证,三计算”的解题步骤.通过证明“平面”.明确就是三棱锥的高.
解答此类问题,容易出现的错误是忽视证明,利用直观感觉确定高.
试题解析:(I)直三棱柱中,∵,∴四边形为正方形,

又∵,∴,∴⊥面,∴
又在直棱柱中,,∴B1C1⊥平面ABB1A1
(II)∵的中点,∴
平面
就是三棱锥的高.
由(I)知B1C1⊥平面ABB1A1,∴平面ABB1A1
.∴是直角等腰三角形.
又∵,∴

∴三棱锥的体积.
考点:垂直关系、体积计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是边长为1的正方形,平面的中点,在棱上.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,底面,点分别为棱的中点.

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥平面,底面为直角梯形,,且,.

(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当,且求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△中,,在三角形内挖去一个半圆(圆心在边上,半圆与分别相切于点,与交于点),将△绕直线旋转一周得到一个旋转体。

(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.

求证:BD⊥AA1
若四边形是菱形,且,求四棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.

(Ⅰ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积V;
(2)求该几何体的侧面积S.

查看答案和解析>>

同步练习册答案