精英家教网 > 高中数学 > 题目详情
11.若关于x的方程|x2-4|=k恰好有两个不等的实数根,则实数k的取值范围是k=0或k>4.

分析 作函数y=|x2-4|的图象,通过数形结合得到答案.

解答 解:作函数y=|x2-4|的图象如下,

结合图象可知,
k=0或k>4时,函数y=|x2-4|与y=k的图象有两个交点,
故关于x的方程|x2-4|=k恰好有两个不等的实数根,
故答案为:k=0或k>4.

点评 本题考查了数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知定义在R上的函数f(x)满足对于定义域内任意的实数x,y都有f(x+y)=$\frac{f(x)+f(y)}{1+f(x)f(y)}$,且当x>0时,-1<f(x)<0
(1)判断f(x)的奇偶性并证明;
(2)判断并证明函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求满足下列条件的双曲线标准方程:
(1)a=12,焦点为F1(-13,0),F2(13,0);
(2)b=3,焦点为F1(0,-3$\sqrt{3}$),F2(0,3$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=1og2$\frac{3x-1}{3x+1}$.
(1)求函数的定义域;
(2)证明:函数是奇函数;
(3)证明:函数中其定义域上的每个区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.x∈R,y=5-sin$\frac{x}{2}$的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平面向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=-6,则$\frac{{x}_{1}+{y}_{1}}{{x}_{2}+{y}_{2}}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是定义域为R的奇函数,当x<0时,f(x)=x|x-1|+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次函数y=ax2+bx+c(a≠0).
当a>0时,值域为[$\frac{4ac-{b}^{2}}{4a}$,+∞);
当a<0时,值域为(-∞,$\frac{4ac-{b}^{2}}{4a}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.作函数y=$\left\{\begin{array}{l}{x+2,x∈[1,3]}\\{3,x∈(-1,1)}\\{-x,x∈[-3,-1]}\end{array}\right.$的图象.

查看答案和解析>>

同步练习册答案