精英家教网 > 高中数学 > 题目详情
14.袋中有大小、形状完全相同的红球、黄球、绿球共12个,从中任取一球,得到红球或绿球的概率是$\frac{2}{3}$,得到红球或黄球的概率是$\frac{5}{12}$.
(Ⅰ)从中任取一球,求分别得到红球、黄球、绿球的概率;
(Ⅱ)从中任取一球,求得到不是“红球”的概率.

分析 (Ⅰ)从12个球中任取一个,记事件A=“得到红球“,事件B=“得到黄球”,事件C=“得到绿球”,事件A,B,C两两相斥,由此利用互斥事件概率加法公式能分别求出得到红球、黄球、绿球的概率.
(Ⅱ)事件“不是红球”可表示为事件“B+C”,由此利用互斥事件概率加法公式能求出得到的不是红球的概率.

解答 解:(Ⅰ)从12个球中任取一个,记事件A=“得到红球“,
事件B=“得到黄球”,事件C=“得到绿球”,
事件A,B,C两两相斥,
由题意得$\left\{\begin{array}{l}{P(A+C)=\frac{2}{3}}\\{P(A+B)=\frac{5}{12}}\\{P(A+B+C)=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{P(A)=\frac{1}{12}}\\{P(B)=\frac{1}{3}}\\{P(C)=\frac{7}{12}}\end{array}\right.$,
∴得到红球、黄球、绿球的概率分别为$\frac{1}{12},\frac{1}{3},\frac{7}{12}$.
(Ⅱ)事件“不是红球”可表示为事件“B+C”,
由(Ⅰ)及互斥事件概率加法公式得:
P(B+C)=P(B)+P(C)=$\frac{1}{3}+\frac{7}{12}=\frac{11}{12}$,
∴得到的不是红球的概率为$\frac{11}{12}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合M={y|y=-x2+4},N={x|y=log2x},则M∩N=(  )
A.[4,+∞)B.(-∞,4]C.(0,4)D.(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1,四边形ABCD为直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E为CD上一点,F为BE的中点,且DE=1,EC=2,现将梯形沿BE折叠(如图2),使平面BCE⊥ABED.
(1)求证:平面ACE⊥平面BCE;
(2)能否在边AB上找到一点P(端点除外)使平面ACE与平面PCF所成角的余弦值为$\frac{\sqrt{6}}{3}$?若存在,试确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题:“?x>0,x2+x≥0”的否定形式是(  )
A.?x≤0,x2+x>0B.?x>0,x2+x≤0C.?x0>0,x02+x0<0D.?x0≤0,x02+x0>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线f(x)=x2+3x-ex在点(0,f(0))处的切线的方程为(  )
A.y=x-1B.y=x+1C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<3}\\{lo{g}_{3}x,x≥3}\end{array}\right.$的值域为R,则实数a的范围是(  )
A.[-1,1]B.(-1,1]C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{{a}_{n}}{{b}_{n}}$=$\frac{3n+21}{n+1}$,则$\frac{{S}_{15}}{{T}_{15}}$=(  )
A.$\frac{33}{8}$B.6C.5D.$\frac{69}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果函数f(x)=lnx+ax2-2x有两个不同的极值点,那么实数a的范围是$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$.
(Ⅰ)若AC的中点为E,求A1C与DE所成的角的正弦值;
(Ⅱ)求二面角B1-AC-D1(锐角)的余弦值.

查看答案和解析>>

同步练习册答案