精英家教网 > 高中数学 > 题目详情
已知a+b=(2,-8),a-b=(-8,16),求ab.

解析一:设a=(m,n),b=(p,q),

则有解之,得

所以a=(-3,4),b=(5,-12).

解析二:a=[(a+b)+(a-b)]=(-3,4),

b=[(a+b)-(a-b)]=(5,-12).

点评:以上两种解法都是通过解方程组得到解决的.解析一侧重于解以坐标为主体的方程;解析二侧重寻求向量之间的关系解向量方程.解析二采用“整体法”处理向量的问题,更显得简捷、明了.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①若|x-lgx|<x+|lgx|成立,则x>1;
②抛物线y=2x2的焦点坐标是(
1
2
,0)

③已知|
a
|=|
b
|=2
a
b
的夹角为
π
3
,则
a
+
b
a
上的投影为3;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
处取得最小值,则f(
2
-x)=-f(x)
;.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=|
b
|=2
a
b
,向量
c
满足:(
a
+
c
)•(
b
-
c
)=0
,那么|
c
|
的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=|
b
|=2,(
a
+2
b
)•(
a
-
b
)
=-6,则
a
b
的夹角为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)已知|
a
|=|
b
|=2,
a
b
的夹角为
π
3
,则
b
a
上的投影为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
| =|
b
| =2
a
b
的夹角为
π
3
,则
a
+
b
a
上的投影为
3
3

查看答案和解析>>

同步练习册答案