精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E)的离心率为,且短轴的一个端点B与两焦点AC组成的三角形面积为.

(Ⅰ)求椭圆E的方程;

(Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O于不同的两点MN(其中MN的右侧),求四边形面积的最大值.

【答案】(Ⅰ);(Ⅱ)4.

【解析】

(Ⅰ) 结合已知可得求出ab的值,即可得椭圆方程;

(Ⅱ)由题意可知,直线的斜率存在,设出直线方程,联立直线方程与椭圆方程,利用判别式等于0可得,联立直线方程与圆的方程,结合根与系数的关系求得,利用弦长公式及点到直线的距离公式,求出,得到,整理后利用基本不等式求最值.

解:(Ⅰ)可得结合

解得,得椭圆方程

(Ⅱ)易知直线的斜率k存在,设

,得

,得

设点O到直线的距离为d

,得

,易知,∴,则

四边形的面积

当且仅当,即时取”.

∴四边形面积的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PCDEAD的中点,ACBE相交于点O.

1)证明:平面ABCD.

2)求直线BC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,上的一点,的中点,以为折痕把折起,使点到达点的位置,且.

1)证明:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019101日,是中华人民共和国成立70周年纪念日.70年砥砺奋进,70年波澜壮阔,感染、激励着一代又一代华夏儿女,为祖国的繁荣昌盛努力拼搏,奋发图强.为进一步对学生进行爱国教育,某校社会实践活动小组,在老师的指导下,从学校随机抽取四个班级160名同学对这次国庆阅兵受到激励情况进行调查研究,记录的情况如下图:

1)如果从这160人中随机选取1人,此人非常受激励的概率和此人是很受激励的女同学的概率都是,求的值;

2)根据“非常受激励”与“很受激励”两种情况进行研究,判断是否有的把握认为受激励程度与性别有关.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络商城在日开展庆元旦活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.

1)求抽取的这家店铺,元旦当天销售额的平均值;

2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;

3)为了了解抽取的各店铺的销售方案,销售额在的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在各一个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极值,且,则称为函数F”.

1)设函数.

①当时,求函数的极值;

②若函数存在F,求k的值;

2)已知函数ab)存在两个不相等的F,且,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDPE中,四边形ABCD是直角梯形,,平面平面的余弦值为FBE中点,GPD中点.

1)求证:平面ABCD

2)求平面BCE与平面ADE所成角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

1)经计算估计这组数据的中位数;

2)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.

3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:

A:所有芒果以10/千克收购;

B:对质量低于250克的芒果以2/个收购,高于或等于250克的以3/个收购,通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

同步练习册答案
鍏� 闂�