精英家教网 > 高中数学 > 题目详情

已知直三棱柱ABC-A1B1C1,AB=AC,F为BB1上一点,数学公式,BF=BC=2a,若D为BC的中点,E为线段AD上不同于A,D任意一点.
(1)证明:EF⊥FC1
(2)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么?证明你的结论.

(1)证明:连接FD,FC1

,BF=BC=2a,D为BC的中点,可得BF=B1C1,BD=B1F,
∵∠C1B1F=∠FBD,∴△FB1C1≌△DBF,则∠C1FB1=∠FDB
又∠DFB+∠FDB=90°,所以C1F⊥FD
又FD是EF在平面C1B1CB的射影,则C1F⊥FE
(2)解:在线段AD上的不存在E点使EF与平面BB1C1C成60°角,理由如下:
∵AB=AC,D为BC的中点,
∴AD⊥BC
∵平面ABC⊥平面C1B1CB,平面ABC∩平面C1B1CB=CB
∴AD⊥平面C1B1CB
∴∠EFD是EF与平面C1B1CB所成的角
由题意知,所以
于是
故不存在.
分析:(1)先证明△FB1C1≌△DBF,从而可得C1F⊥FD,又FD是EF在平面C1B1CB的射影,可证C1F⊥FE;
(2)先证明AD⊥平面C1B1CB,可得∠EFD是EF与平面C1B1CB所成的角,由,所以求出ED长,即可得到结论.
点评:本题考查线线垂直,考查线面角,考查学生分析解决问题的能力,确定线面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1的所有棱长都相等,且D,E,F分别为BC,BB1,AA1的中点.
(I) 求证:平面B1FC∥平面EAD;
(II)求证:BC1⊥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′两两垂直,E,F,H分别是AC,AB,BC的中点,
(I)证明:EF⊥AH;    
(II)求四面体E-FAH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分别是棱BC.CC1.B1C1的中点.A1Q=3QA, BC=
2
AA1

(Ⅰ)求证:PQ∥平面ANB1
(Ⅱ)求证:平面AMN⊥平面AMB1

查看答案和解析>>

同步练习册答案