精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,平面平面,三角形为等边三角形, ,且的中点,的中点.

1)求证:平面

2)求证:平面平面

3)求三棱锥的体积.

【答案】1)证明见解析;(2)证明见解析;(3.

【解析】

1)根据分别为的中点,由中位线,可得,再由线面平行的判定定理得证.

2)由的中点,可得,再由平面平面,根据面面垂直的性质定理,可得平面,又平面,由面面垂直的判定定理可证.

3)在等腰直角三角形中,求得,再由三角形为等边三角形,可求得其面积,然后由(2)中平面得解.

1)∵分别为的中点,

平面平面

平面

2)∵的中点,

∵平面平面平面

平面

平面

∴平面平面

3)在等腰直角三角形中,

,∴

平面

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),直线经过点,且倾斜角为

(1)写出直线的参数方程和圆的标准方程;

(2)设直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合中任取3个互不相同的数字,排成一个三位数,则这个三位数是“凸数”的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某野生保护区监测中心设置在点处,正西、正东、正北处有三个监测点,且,一名野生动物观察员在保护区遇险,发出求救信号,三个监测点均收到求救信号,点接收到信号的时间比点接收到信号的时间早秒(注:信号每秒传播千米).

1)以为原点,直线轴建立平面直角坐标系(如题),根据题设条件求观察员所有可能出现的位置的轨迹方程;

2)若已知点与点接收到信号的时间相同,求观察员遇险地点坐标,以及与检测中心的距离;

3)若点监测点信号失灵,现立即以监测点为圆心进行圆形红外扫描,为保证有救援希望,扫描半径至少是多少公里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点F为抛物线C)的焦点,过点F的动直线l与抛物线C交于MN两点,且当直线l的倾斜角为45°时,.

1)求抛物线C的方程.

2)试确定在x轴上是否存在点P,使得直线PMPN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),把曲线横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线,直线的普通方程是,以坐标原点为极点,轴正半轴为极轴建立极坐标系;

(1)求直线的极坐标方程和曲线的普通方程;

(2)记射线交于点,与交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,以原点为圆心,为半径的定圆,与过原点且斜率为的动直线交于两点,在轴正半轴上有一个定点三点构成三角形,求:

1的面积的表达式,并求出的取值范围;

2的外接圆的面积的表达式,并求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正整数数列的前项和为,前项积,若,则称数列为“数列”.

(1)判断下列数列是否是数列,并说明理由;①2248;②8244056

(2)若数列数列,且.

(3)是否存在等差数列是数列?请阐述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆经过点.设椭圆的左顶点为,右焦点为,右准线与轴交于点,且为线段的中点.

(1)求椭圆的标准方程;

(2)若过点的直线与椭圆相交于另一点轴上方),直线与椭圆相交于另一点,且直线垂直,求直线的斜率.

查看答案和解析>>

同步练习册答案