精英家教网 > 高中数学 > 题目详情

【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:

某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

(1)求的值;

(2)若从这辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;

(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为(单位:万元),求的分布列和数学期望.

【答案】(I) (II) (III)见解析.

【解析】试题分析:(1)由统计图中第一组的频数与频率关系,易求得;(2)辆中,有辆车续驶里程不低于公里,由排列组合与古典概型,可得概率;(3)先列出的所有可能的取值,再求出各取值所对应的概率,可列出分布列,由分布列可求期望值.

试题解析:

(I)易求

(II)

∴从这10辆纯电动乘用车中任选3辆,选到的3辆车续驶里程都不低于180公里的概率为

(III)X所有可能的取值为5,6.5,8,8.5,10,12.

其中,

X

5

6.5

8

8.5

10

12

P

0.09

0.36

0.36

0.06

0.12

0.01

X的分布列为

X

5

6.5

8

8.5

10

12

P

0.09

0.36

0.36

0.06

0.12

0.01

E(X)=5×0.09+6.5×0.36+8×0.36+8.5×0.06+10×0.12+12×0.01=7.5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数,其图象与轴交于 两点,且

(Ⅰ)求实数的取值范围;

(Ⅱ)证明: 为函数的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形),被截去一角(即), ,平面平面 .

(1)求五棱锥的体积的最大值;

(2)在(1)的情况下,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x},集合B={x|x≤1},那么U(A∩B)等于(  )
A.{x|x或x>1}
B.{x|x1}
C.{x|x≤或x1}
D.{x|≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】服装厂拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用)万元满足.已知年生产该产品的固定投入为万元,每生产万件该产品需要投入万元.厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

(1)将2017年该产品的利润万元表示为年促销费用万元的函数;

(2)该服装厂2017年的促销费用投入多少万元时,利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点(1,3),并且g(x)=xf(x)是偶函数.
(1)求实数a、b的值;
(2)用定义证明:函数g(x)在区间(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)求的单调区间;

(2)已知,若对所有,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题,其中m,n,l为直线,α,β为平面
①mα,nα,m∥β,n∥βα∥β;
②设l是平面α内任意一条直线,且l∥βα∥β;
③若α∥β,mα,nβm∥n;
④若α∥β,mαm∥β.
其中正确的是(  )
A.①②
B.②③
C.②④
D.①②④

查看答案和解析>>

同步练习册答案