精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面.为线段的中点.

1)证明:

2)求与平面所成的角的正弦值.

【答案】(1)见解析;(2)

【解析】

1)根据已知条件证明,结合平面.即可得证;

2)解法一(几何法):先找到在平面内的射影直线,则所求角可得,在直角三角形中求出此角,即可得结果;

解法二(空间向量法):建立空间直角坐标系,确定各点坐标,求出坐标和平面的法向量坐标,结合线面角公式,即可得结果.

1)取中点,因为,,

所以,,∴.

因为平面,平面,所以,

因为平面,平面,,

所以.

2)法一:连结,由(1平面可得,

与平面所成角为.

,分别是,的中点,

,

因为,,

所以,

因为,所以,

∴在中,

.

因此与平面所成的角的正弦值为.

法二:以为坐标原点,,平行于的直线

轴,建立如图所示空间直角坐标系,则因为

,,所以,,

因为,所以,因此,,

,,,

从而为平面一个法向量,

,,

.

因此与平面所成的角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,边长为的正方形,

1)求证:平面

2)求二面角的余弦值;

3)证明:在线段上存在点,使得,并求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)①讨论函数的单调性;

②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

(1)求证:

(2)若的中点.

(i)过点作一直线平行,在图中画出直线并说明理由;

(ii)求平面将三棱锥分成的两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,且,其中分别是的中点,动点在线段上运动时,下列四个结论:①

其中恒成立的为(

A. ①③ B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在正方体中,点分别为棱的中点,点为上底面的中心,过三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连接的任一点,设与平面所成角为,则的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的偶函数且以2为周期,则“上的增函数”是“上的减函数”的  

A. 充分而不必要的条件B. 必要而不充分的条件

C. 充要条件D. 既不充分也不必要的条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,命题p:x∈[-2,-1],x2-a≥0,命题q:

(1)若命题p为真命题,求实数a的取值范围;

(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, ABC 中, ACB 90 , ABC 30 , BC ,在三角形内挖去一个半圆(圆心 O 在边 BC 上,半圆与 ACAB 分别相切于点 CM ,与 BC 交于点 N ),将其绕直线 BC旋转一周得到一个旋转体,则该旋转体体积为________

查看答案和解析>>

同步练习册答案