精英家教网 > 高中数学 > 题目详情
已知x、y满足不等式组
x+2y-3≤0
x+3y-2≥0
y≤1
,则z=x-y的最大值是(  )
A、6B、4C、OD、-2
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得z=x-y的最大值.
解答: 解:由约束条件
x+2y-3≤0
x+3y-2≥0
y≤1
作出可行域如图,

联立
x+2y-3=0
x+3y-2=0
,解得
x=5
y=-1
,∴A(5,-1).
由z=x-y,得y=x-z,
由图可知,当直线y=x-z过A时,直线在y轴上的截距最小,z有最大值为5-(-1)=6.
故选:A.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知2lgx=lg81,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是函数y=log2x的反函数,
(Ⅰ)求y=f(x)的解析式.
(Ⅱ)若x∈(0,+∞),试分别写出使不等式
(ⅰ)log2x<2x<x2
(ⅱ)log2x<x2<2x成立自变量x的取值范围
(Ⅲ)求不等式loga(x-3)>loga(5-x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小内角的大小为30°,则双曲线C的渐近线方程是(  )
A、
2
x±y=0
B、x±
2
y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+3•ex的图象存在与直线2x-4y+1=0垂直的切线,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD与等腰直角△APB所在平面互相垂直,AD∥BC,∠APB=∠ABC=90°,AB=BC=2AD=2,E为PB的中点.
(Ⅰ)求证:直线AE∥平面PCD;
(Ⅱ)求四面体C-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图中,若f(x)=x2-x+1,g(x)=x+4,且h(x)≥m恒成立,则m的最大值是(  )
A、4B、3C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,P是BC的中点,AB=1,AC=2,则
AP
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列函数中.在[0,3]上是增函数且是偶函数的函数是(  )
A、y=3x+3-x
B、y=-|x-3|
C、y=log2
3-x
3+x
D、y=cosx

查看答案和解析>>

同步练习册答案