精英家教网 > 高中数学 > 题目详情
9.复数$\frac{-2i}{(1+{i)}^{3}}$的虚部为$\frac{1}{2}$.

分析 利用复数代数形式的乘除运算化简,则复数$\frac{-2i}{(1+{i)}^{3}}$的虚部可求.

解答 解:∵$\frac{-2i}{(1+{i)}^{3}}$=$\frac{-2i}{{1}^{3}+3i+3{i}^{2}+{i}^{3}}=\frac{-2i}{-2+2i}$
=$\frac{i}{1-i}=\frac{i(1+i)}{(1-i)(1+i)}$=$\frac{-1+i}{2}=-\frac{1}{2}+\frac{i}{2}$.
∴复数$\frac{-2i}{(1+{i)}^{3}}$的虚部为$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设直线3x-4y+5=0的倾斜角为α,则sinα=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.2loga(M-2N)=logaM+logaN,则$\frac{M}{N}$的值为(  )
A.$\frac{1}{4}$B.4C.1D.4或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若sinA:sinB:sinC=3:4:6,则cosC=(  )
A.$\frac{11}{24}$B.$\frac{13}{24}$C.-$\frac{13}{24}$D.-$\frac{11}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关于命题的说法错误的是(  )
A.若命题p:?n∈N,2n>1000,则¬p:?n∈N,2n≤1000
B.命题“若x2-3x+2=0,则x=1”,逆否命题为“若x≠1,则x2-3x+2≠0”;
C.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件;
D.命题“?x∈(-∞,0),2x<3x”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题p:椭圆方程$\frac{{x}^{2}}{2m-8}$+$\frac{{y}^{2}}{m-3}$=1.表示焦点在y轴上的椭圆;命题q:复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点在第三象限.
(1)若命题p为真命题,求实数m的范围;
(2)若命题“p∨q”为真,命题“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简求值:
(1)1.10+$\root{3}{512}$-0.5-2+lg25+2lg2
(2)已知2x=72y=A,且$\frac{1}{x}$+$\frac{1}{y}$=2,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某校高考数学成绩ξ近似地服从正态分布N(100,52),且P(ξ<110)=0.98,P(90<ξ<100)的值为0.48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若$\frac{b}{c}=\frac{3}{5}$,则$\frac{sinB+2sinC}{sinC}$=$\frac{13}{5}$.

查看答案和解析>>

同步练习册答案