精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图所示,记椭圆的左、右顶点分别为,当动点在定直线上运动时,直线分别交椭圆于两点,求四边形面积的最大值.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(Ⅰ) 离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为,结合,列方程组求得 的值,即可求出椭圆的方程;(Ⅱ)点,直线的方程代入椭圆方程,得,利用韦达定理解出点坐标,同理可求得 点的坐标,利用三角形面积公式将四边形面积表示为 的函数,利用换元法结合函数单调性求解即可.

试题解析:(Ⅰ)由题设知,

,解得

故椭圆的方程为.

(Ⅱ)由于对称性,可令点,其中.

将直线的方程代入椭圆方程,得

,则.

再将直线的方程代入椭圆方程,得

,则.

故四边形的面积为 .

由于,且上单调递增,故

从而,有.

当且仅当,即,也就是点的坐标为时,四边形的面积取最大值6.

注:本题也可先证明”动直线恒过椭圆的右焦点”,再将直线的方程 (这里)代入椭圆方程,整理得,然后给出面积表达式 ,令,

,当且仅当时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个口袋中装有个红球个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.

(1)用表示一次摸奖中奖的概率

(2)若,设三次摸奖(每次摸奖后球放回)恰好有次中奖,求的数学期望

(3)设三次摸奖(每次摸奖后球放回)恰好有一次中奖的概率,当取何值时, 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有命题: ①y=|sinx﹣ |的周期是π;
②y=sinx+sin|x|的值域是[0,2];
③方程cosx=lgx有三解;
④ω为正实数,y=2sinωx在 上递增,那么ω的取值范围是
⑤在y=3sin(2x+ )中,若f(x1)=f(x2)=0,则x1﹣x2必为π的整数倍;
⑥若A、B是锐角△ABC的两个内角,则点P(cosB﹣sinA,sinB﹣cosA在第二象限;
⑦在△ABC中,若 ,则△ABC钝角三角形.其中真命题个数为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)是否存在实数t,使不等式f(x﹣t)+f(x2﹣t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,且平面 平面, 中点, .

(Ⅰ)求证:平面平面

(Ⅱ)若二面角的平面角大小满足,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

1)写出直线的普通方程和曲线的直角坐标方程;

2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=x3+x2+mx+1在(﹣∞,+∞)上是单调函数,则实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=

l)求函数fx)的定义域;

2)求函数fx)的值域.

查看答案和解析>>

同步练习册答案