精英家教网 > 高中数学 > 题目详情

数学公式,f1(x)=f(x),fn(x)=fn-1[f(x)](n≥2,n∈N*),则f(1)+f(2)+…f(2011)+f1(1)+f2(1)+f3(1)…f2011(1)=


  1. A.
    2009
  2. B.
    2010
  3. C.
    2011
  4. D.
    1
C
分析:观察所给的前四项的结构特点,先观察分子,只有一项组成,并且没有变化,在观察分母,有两部分组成,是一个一次函数,根据一次函数的一次项系数与常数项的变化特点,得到f(n)+fn(1)=+=1,从而得出结果.
解答:∵函数f(x)=,观察:
f1(x)=f(x)=
f2(x)=f(f1(x))=
f3(x)=f(f2(x))=
f4(x)=f(f3(x))=

所给的函数式的分子不变都是x,
而分母是由两部分的和组成,
第一部分的系数分别是x,2x,3x,4x…nx,
第二部分的数1
∴fn(x)=f(fn-1(x))=
f(n)+fn(1)=+=1,
则f(1)+f(2)+…+f(2011)+f1(1)+f2(1)+f3(1)…+f2011(1)
=2011
故选C.
点评:本题考查归纳推理,实际上本题考查的重点是给出一个数列的前几项写出数列的通项公式,本题是一个综合题目,知识点结合的比较巧妙.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

几位同学在研究函数f(x)=
x
1+|x|
(x∈R)时,给出了下面几个结论:
①函数f(x)的值域为(-1,1);②若x1≠x2,则一定有f(x1)≠f(x2);③f(x)在(0,+∞)是增函数;④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=
x
1+n|x|
对任意n∈N*恒成立,
上述结论中正确的个数有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,甲、乙、丙三位同学在研究此函数时分别给出命题:
甲:函数f(x)的值域为(-1,1);
乙:若x1≠x2则一定有f(x1)≠f(x2);
丙:若规定f1(x)=f(x),fn(x)=f(f1(x)),则fn(x)=
x
1+nx
,对任意的n∈N*恒成立
你认为上述三个命题中正确的个数有(  )
A、3个B、2个C、1个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出了函数f(x)=
x
1+|x|
(x∈R)
,三位同学甲、乙、丙在研究此函数时分别给出命题:
①函数f(x)的值域为(-1,1);
②若x1≠x2,则一定有f(x1)≠f(x2
③若规定f1(x)=f(x),fn(x)=f(fn-1(x)),则fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述三个命题中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

研究函数f(x)=
x
1+|x|
(x∈R)
的性质,分别给出下面结论(  )
①若x1=-x2,则一定有f(x1)=-f(x2);
②函数f(x)在定义域上是减函数;
③函数f(x)的值域为(-1,1);
④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=
x
1+n|x|
对任意n∈N*恒成立,
其中正确的结论有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
x
1+|x|
(x∈R)时,给出了下面几个结论:
①函数f(x)的值域为(-1,1);②若f(x1)=f(x2),则恒有x1=x2;③f(x)在(-∞,0)上是减函数;
④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=
x
1+n|x|
对任意n∈N*恒成立,
上述结论中所有正确的结论是(  )

查看答案和解析>>

同步练习册答案