精英家教网 > 高中数学 > 题目详情
13.已知定义域为R的奇函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+2}}$.
(1)求b的值;
(2)证明函数f(x)为定义域上的单调递减函数;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

分析 (1)利用f(x)是奇函数,通过f(0)=0,求解b即可.
(2)由(1)知函数的解析式,利用函数的单调性定义设x1<x2,推出f(x1)-f(x2)>0,即可证明函数是单调减函数.
(3)利用函数的单调性以及函数的奇偶性转化不等式:f(t2-2t)+f(2t2-k)<0为t2-2t>k-2t2.然后利用判别式列出不等式求解即可.

解答 解:(1)因为f(x)是奇函数,所以f(0)=0,
即$\frac{b-1}{2+2}=0⇒b=1∴f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}$,经验证此时满足f(-x)=-f(x)∴b=1;
(2)证明:由(1)知$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$,
设x1<x2则$f({x_1})-f({x_2})=\frac{1}{{{2^{x_1}}+1}}-\frac{1}{{{2^{x_2}}+1}}=\frac{{{2^{x_2}}-{2^{x_1}}}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}$
因为函数y=2x在R上是增函数且x1<x2∴${2^{x_2}}-{2^{x_1}}$>0
又$({2^{x_1}}+1)({2^{x_2}}+1)$>0∴f(x1)-f(x2)>0即f(x1)>f(x2
∴f(x)在(-∞,+∞)上为减函数.
(3)因f(x)是奇函数,从而不等式:f(t2-2t)+f(2t2-k)<0
等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),
因f(x)为减函数,由上式推得:t2-2t>k-2t2
即对一切t∈R有:3t2-2t-k>0,
从而判别式$△=4+12k<0⇒k<-\frac{1}{3}$.

点评 本题考查函数的奇偶性以及函数的单调性函数恒成立条件的应用,考查转化思想,函数与方程的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知命题:?x∈R,x2-ax+2a>0在R上恒成立,则实数a的取值范围是(  )
A.(0,4)B.(-8,8)C.RD.(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$与函数$y=\sqrt{x}(x≥0)$的图象交于点P,若函数$y=\sqrt{x}$在点P处的切线过双曲线左焦点F(-1,0),则双曲线的离心率是(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}+3}}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若不等式(a+2)x2+2(a+2)x+4>0对一切恒成立,则a的取值范围是[-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若a=c=2,B=120°,则边b=(  )
A.$3\sqrt{3}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)若圆x2+y2=4在伸缩变换$\left\{\begin{array}{l}{x′=λx}\\{y′=3y}\end{array}\right.$(λ>0)的作用下变成一个焦点在x轴上,且离心率为$\frac{4}{5}$的椭圆,求λ的值;
(Ⅱ)在极坐标系中,已知点A(2,0),点P在曲线C:$ρ=\frac{2+2cosθ}{si{n}^{2}θ}$上运动,求P、A两点间的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=asinx+cosx(a为常数,x∈R)的图象关于直线$x=\frac{π}{6}$对称,则函数g(x)=sinx+acosx的图象(  )
A.关于点$({\frac{π}{3},0})$对称B.关于点$({\frac{2π}{3},0})$对称
C.关于直线$x=\frac{π}{3}$对称D.关于直线$x=\frac{π}{6}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F1、F2分别为双曲线C:x2-$\frac{{y}^{2}}{3}$=1的左、右焦点,过原点的一条直线交双曲线C于A、B两点(点A位于第一象限),且满足AF1⊥BF1,则△AF1F2的内切圆圆心的横、纵坐标之和为(  )
A.2$\sqrt{2}$-1B.$\sqrt{2}+$1C.$\sqrt{7}$-1D.2$\sqrt{7}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若复数z满足$\frac{zi}{z-i}=1$,其中i为虚数单位,则复数z的共轭复数为(  )
A.$-\frac{1}{2}+\frac{i}{2}$B.$-\frac{1}{2}-\frac{i}{2}$C.$\frac{1}{2}-\frac{i}{2}$D.$\frac{1}{2}+\frac{i}{2}$

查看答案和解析>>

同步练习册答案