精英家教网 > 高中数学 > 题目详情
7.几何体的三视图如图所示,则该几何体的体积为28.

分析 由已知中的三视图,可得该几何体是一个三棱柱切去一个三棱锥所得的几何体,分别计算出柱体和锥体的体积,相减可得答案.

解答 解:由已知中的三视图,可得该几何体是一个三棱柱切去一个三棱锥所得的几何体,
三棱柱的体积为:$\frac{1}{2}×3×4×6$=36,
三棱锥的体积:$\frac{1}{3}×(\frac{1}{2}×3×4)×(6-2)$=8,
故组合体的体积V=36-8=28,
故答案为:28

点评 本题考查的知识点是由三视图求体积和表面积,根据三视图判断出几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若平面α⊥平面β,平面α⊥平面γ,则平面β与平面γ的位置关系是③(填序号). ①平行  ②相交   ③平行或相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知∠BAC>90°,∠ACB=30°,AB=DB=DC,求∠CAD的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数y=2tan($\frac{π}{6}$-$\frac{x}{3}$)的定义域、最小正周期及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=2sin(2x+$\frac{π}{3}$)+1
(1)求最小正周期;
(2)求最值及相应x的集合;
(3)当x∈[0,$\frac{π}{2}$]时,求函数的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆x2+y2+4x-8y-16=0,则圆心的坐标为(-2,4),半径为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l过两直线l1:2x+3y-9=0和l2:x-2y-1=0的交点,且与直线3x+2y-16=0平行,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为14035,则出齐这套书的年份是(  )
A.2005B.2007C.2009D.2011

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.奇函数f(x)是定义域为R的周期函数,其周期为4,当x∈(-2,0)时f(x)=2x,f(2012)-f(2011)=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案