精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,直线两点, 的中点,过轴的垂线交点.

(1)证明:抛物线点处的切线与平行;

(2)是否存在实数,使以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.

【答案】(1)见解析;(2) 存在实数使以为直径的圆经过点.

【解析】【试题分析】(1)先运用直线与抛物线的位置关系求出切点坐标,再求导运用导数的几何意义分析推证;(2)依据题设条件借助(1)的结论分析探求:

(1)证明:设 ,把代入.

所以 ,所以.

因为,所以抛物线在点处的切线斜率为,故该切线与平行.

(2)假设存在实数,使以为直径的圆经过点,则.

由(1)知 ,又因为垂直于轴,

所以

.

所以,解得.

所以,存在实数使以为直径的圆经过点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)在x≥0时的图象是如图所示的抛物线的一部分,
(1)请补全函数f(x)的图象

(2)求函数f(x)的表达式,
(3)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当a>0时,求函数f(x)的单调递减区间;

(Ⅱ)当a=0时,设函数g(x)=xf(x)﹣k(x+2)+2.若函数g(x)在区间 上有两个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:

评估的平均得分

全市的总体交通状况等级

不合格

合格

优秀

1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;

2)用简单随机抽样方法从这条道路中抽取条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局.在一局比赛中,甲胜乙的概率为 ,甲胜丙的概率为 ,乙胜丙的概率为 .比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束.
(1)求只进行了三局比赛,比赛就结束的概率;
(2)记从比赛开始到比赛结束所需比赛的局数为ξ,求ξ的概率分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南中学对高二学生进行心理障碍测试得到如下列联表:

焦虑

说谎

懒惰

总计

女生

5

10

15

30

男生

20

10

50

80

总计

25

20

65

110

试说明在这三种心理障碍中哪一种与性别关系最大?
参考数据:K2=

P(K2≥k)

0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.535

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数.

I)若曲线在点处的切线平行于,的值;

II)求函数的极值;

III)当,若直线与曲线没有公共点,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,求解下列问题(1)求函数f(x)的定义域;(2)求f(﹣1),f(12)的值;.
(1)求函数f(x)的定义域;
(2)求f(﹣1),f(12)的值;

查看答案和解析>>

同步练习册答案