精英家教网 > 高中数学 > 题目详情
在△ABC中,a=6,B=30°,C=120°,则△ABC的面积是
 
考点:正弦定理
专题:解三角形
分析:由B与C的度数求出A的度数,确定出sinA的值,再由sinB以及a的值,利用正弦定理求出b的值,利用三角形面积公式即可求出三角形ABC面积.
解答: 解:∵在△ABC中,a=6,B=30°,C=120°,即A=30°,
∴由正弦定理
a
sinA
=
b
sinB
得:b=
asinB
sinA
1
2
1
2
=6,
则S△ABC=
1
2
absinC=9
3

故答案为:9
3
点评:此题考查了正弦定理,以及三角形面积公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆锥表面积为πa,其侧面展开图是一个半圆,则圆锥底面半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+lnx.
(1)求曲线y=f(x)在x=1处的切线方程;
(2)求f(x)的单调区间;
(3)求f(x)在区间[1,e]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos
2x
5
+sin
2x
5
的图象中相邻的两个对称中心之间的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数x,y满足x+y=2,则
1
xy
的最小值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=2an-1+1(n≥2)且a1=1,bn=log2(a2n+1+1),cn=
1
b
2
n
-1
.求证:
(Ⅰ)数列{an+1}为等比数列,并求数列{an}的通项公式;
(Ⅱ)数列{cn}的前n项和Sn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xm-
1
x
,且f(2)=
15
2

(1)求m的值;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1-i
1+i
  
(i为虚数单位)的虚部是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,已知A(2,5,-2),B(-1,6,0),则AB=
 

查看答案和解析>>

同步练习册答案