精英家教网 > 高中数学 > 题目详情

设函数,其中的导函数.

(1)求的表达式;
(2)若恒成立,求实数的取值范围;
(3)设,比较的大小,并加以证明.

(1);(2);(3),证明见解析.

解析试题分析:(1)易得,且有,当且仅当时取等号,当时,,当,由,得,所以数列是以为首项,以1为公差的等差数列,继而得,经检验,所以
范围内恒成立,等价于成立,令 ,即成立,,令,得,分两种情况讨论,分别求出的最小值,继而求出的取值范围;
(3)由题设知:,比较结果为:,证明如下:上述不等式等价于
在(2)中取,可得,令,则,即,使用累加法即可证明结论.
试题解析:
(1)
,即,当且仅当时取等号
时,


,即
数列是以为首项,以1为公差的等差数列


时,

(2)在范围内恒成立,等价于成立
,即恒成立,

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)若函数处取得极值,对恒成立,求实数的取值范围;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1当 时, 与)在定义域上单调性相反,求的 的最小值。
(2)当时,求证:存在,使的三个不同的实数解,且对任意都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数。
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中,且曲线在点处的切线垂直于.
(1)求的值;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
上的最大值和最小值分别记为,求
恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)若函数f(x)在R上单调递增,求实数a的取值范围;
(2)若函数f(x)在区间(-1,1)上单调递减,求实数a的取值范围.

查看答案和解析>>

同步练习册答案