精英家教网 > 高中数学 > 题目详情

【题目】将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为( )

A. 543 B. 425 C. 393 D. 275

【答案】C

【解析】分析根据题意,易得5名同学中每人有3种报名方法,由分步计数原理计算可得答案.第二种先分组再排列,问题得以解决.

详解:5名同学报名参加跳绳、接力,投篮三项比赛,每人限报一项,每人有3种报名方法,根据分步计数原理,x==243种,

当每项比赛至少要安排一人时,先分组有(+)=25种,再排列有=6种,所以y=25×6=150种,

所以x+y= 393

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,( 为参数),为曲线上的动点,动点满足),点的轨迹为曲线.

(1)求曲线的方程,并说明是什么曲线;

(2)在以坐标原点为极点,以轴的正半轴为极轴的极坐标系中, 点的极坐标为,射线的异于极点的交点为,已知面积的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点为曲线上任意一点且满足

1)求曲线的方程;

2)设曲线 轴交于两点,点是曲线上异于的任意一点,直线分别交直线于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:

(1)将利润表示为月产量的函数

(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育主管部门到一所中学检查学生的体质健康情况.从全体学生中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如图所示.根据学生体质健康标准,成绩不低于76的为优良.

(1)写出这组数据的众数和中位数;
(2)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(3)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究黏虫孵化的平均温度(单位:)与孵化天数之间的关系,某课外兴趣小组通过试验得到以下6组数据:

他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:

经过计算.

(1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)

(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到).

参考公式:线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定一个数列{an},在这个数列里,任取m(m≥3,m∈N*)项,并且不改变它们在数列{an}中的先后次序,得到的数列{an}的一个m阶子数列.
已知数列{an}的通项公式为an= (n∈N* , a为常数),等差数列a2 , a3 , a6是数列{an}的一个3子阶数列.
(1)求a的值;
(2)等差数列b1 , b2 , …,bm是{an}的一个m(m≥3,m∈N*)阶子数列,且b1= (k为常数,k∈N* , k≥2),求证:m≤k+1
(3)等比数列c1 , c2 , …,cm是{an}的一个m(m≥3,m∈N*)阶子数列,求证:c1+c1+…+cm≤2﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

查看答案和解析>>

同步练习册答案