精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x2|x2+2x-3<0},B=.

(1)在区间(-4,4)上任取一个实数x,求xAB的概率;

(2)设(a,b)为有序实数对,其中a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,求b-aAB的概率.

【答案】(1).(2).

【解析】

试题分析:(1)先求A∩B,这是几何概型,测度是长度,代入几何概型的计算公式即可(2)因为a,bZ,且a∈A,b∈B,这是古典概型,设事件E为“b-a∈A∪B”,分别算出基本事件个数和事件E中包含的基本事件,最后根据概率公式即可求得事件E的概率.

试题解析:(1)由已知A={x|-3<x<1},B={x|-2<x<3},AB={x|-2<x<1}.

设事件xAB的概率为P1,这是一个几何概型,则P1=.

(2)因为a,b∈Z,且aA,bB,所以基本事件共12个:(-2,-1),(-2,0),(-2,1),(-2,2),(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2).

设事件Eb-aAB,则事件E中包含9个基本事件,由古典概型知,事件E的概率P(E)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为直线上的动点,过点作圆的两条切线,切点分别为,则四边形为圆心的面积的最小值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有成立.

(1)判断上的单调性,并用定义证明;

(2)解不等式

(3)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数.

(1)试确定的值;

(2)判断的单调性,并证明之

(3)若方程上有解,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县城出租车的收费标准是:起步价是元(乘车不超过千米);行驶千米后,每千米车费1.2元;行驶千米后,每千米车费1.8元.

(1)写出车费与路程的关系式;

(2)一顾客计划行程千米,为了省钱,他设计了三种乘车方案:

①不换车:乘一辆出租车行千米

②分两段乘车:先乘一辆车行千米,换乘另一辆车再行千米;

③分三段乘车:每乘千米换一次车.

问哪一种方案最省钱.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是连续7天每天新增感染人数不超过5,根据连续7天的新增病例数计算,下列① ~ ⑤各个选项中,一定符合上述指标的是 ( )

平均数标准差平均数且标准差

平均数且极差小于或等于2众数等于1且极差小于或等于4

A. ①② B. ③④ C. ③④⑤ D. ④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点斜率为的直线交抛物线于 两点,且.

1求该抛物线的方程;

2过点任意作互相垂直的两条直线,分别交曲线于点.设线段的中点分别为求证:直线恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知 ,且,记动点的轨迹为.

(Ⅰ)求曲线方程;

(Ⅱ)过点的动直线与曲线相交两点,试问在轴上是否存在与点不同的定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,则满足f(f(a))=2fa的a的取值范围是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

同步练习册答案