分析 (1)直线OB的方程为:y=$\frac{3}{2}$x,即3x-2y=0,设经过点C且平行于直线OB的直线l′方程为:y=$\frac{3}{2}$x+b.则当l′与椭圆只有一个公共点时,△OBC的面积最大.此时直线与椭圆相切.
(2)直线l与y轴不垂直,设直线l的方程为:x=my+n,与椭圆方程联立化为:(3m2+4)y2+6mny+3n2-12=0,
利用根与系数的关系及其3y1+y2=0,可得n2=$\frac{3{m}^{2}+4}{3{m}^{2}+1}$.则S△OBC=$\frac{1}{2}|n|$•|y1-y2|=2|n||y1|=$\frac{6|m|{n}^{2}}{3{m}^{2}+4}$=$\frac{6|m|}{3{m}^{2}+4}$.进而得出结论.
解答 解:(1)直线OB的方程为:y=$\frac{3}{2}$x,即3x-2y=0,设经过点C且平行于直线OB的直线l′方程为:y=$\frac{3}{2}$x+b.
则当l′与椭圆只有一个公共点时,△OBC的面积最大.联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=\frac{3}{2}x+b}\end{array}\right.$,化为:3x2+3bx+b2-3=0,
由△=9b2-12(b2-3)=0,解得b=$±2\sqrt{3}$.当b=2$\sqrt{3}$时,C$(-\sqrt{3},\frac{\sqrt{3}}{2})$;当b=-2$\sqrt{3}$时,C$(\sqrt{3},-\frac{\sqrt{3}}{2})$.
S△OBC≤$\frac{1}{2}×\sqrt{1+\frac{9}{4}}$×$\frac{|3\sqrt{3}+\sqrt{3}|}{\sqrt{13}}$=$\sqrt{3}$.
(2)直线l与y轴不垂直,设直线l的方程为:x=my+n,联立$\left\{\begin{array}{l}{x=my+n}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化为:(3m2+4)y2+6mny+3n2-12=0,
∴y1+y2=$\frac{-6mn}{3{m}^{2}+4}$,y1•y2=$\frac{3{n}^{2}-12}{3{m}^{2}+4}$.∵3y1+y2=0,∴y1=$\frac{3nm}{3{m}^{2}+4}$,${y}_{1}^{2}$=$\frac{4-{n}^{2}}{3{m}^{2}+4}$,∴$\frac{9{m}^{2}{n}^{2}}{(3{m}^{2}+4)^{2}}$=$\frac{4-{n}^{2}}{3{m}^{2}+4}$,∴n2=$\frac{3{m}^{2}+4}{3{m}^{2}+1}$.
∴S△OBC=$\frac{1}{2}|n|$•|y1-y2|=2|n||y1|=$\frac{6|m|{n}^{2}}{3{m}^{2}+4}$=$\frac{6|m|}{3{m}^{2}+4}$.
∵B在第一象限,∴x1=my1+n=$\frac{3{m}^{2}n}{3{m}^{2}+4}$+n>0,∴n>0.
∵y1>0,∴m>0.
∴S△OBC=$\frac{6m}{3{m}^{2}+1}$=$\frac{6}{3m+\frac{1}{m}}$$≤\frac{6}{2\sqrt{3}}$=$\sqrt{3}$,当且仅当m=$\frac{\sqrt{3}}{3}$时取等号.此时n=$\frac{\sqrt{10}}{2}$.
此时直线l的方程为:x=$\frac{\sqrt{3}}{3}$y+$\frac{\sqrt{10}}{2}$,即2$\sqrt{3}$x-2y-$\sqrt{30}$=0.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、直线与椭圆相切问题、三角形面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com