精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数与函数在点处有共同的切线,求的值;

(2)证明:

(3)若不等式对所有 都成立,求实数的取值范围.

【答案】(1)t=2;(2)证明见解析;(3) .

【解析】试题分析:

(1)由题意可知: ,据此得到关于实数t的方程,解方程可得:t=2

(2)构造新函数,结合导函数讨论函数的最大值即可证得题中的结论;

(3)将原问题转化为对所有的 都成立,讨论函数 的性质,结合函数的性质可得实数的取值范围是.

试题解析:

1

在点处有共同的切线

,即.

2)令,则

上是增函数,在上是减函数,

的最大值为的最小值是1.

上是增函数,在上是减函数,故

.

3)不等式对所有的 都成立,

对所有的 都成立,

是关于的一次函数,

∴当时, 取得最小值

,当时,恒成立,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0且满足不等式22a+1>25a2
(1)求实数a的取值范围.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+ =0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线L:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=﹣ ,求证:△AOB的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题P:将函数sin2x的图象向右平移 个单位得到函数y=sin(2x﹣ )的图象;命题Q:函数y=sin(x+ )cos( ﹣x)的最小正周期是π,则复合命题“P或Q”“P且Q”“非P”为真命题的个数是个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25x万元(国家规定大货车的报废年限为10年).

1)大货车运输到第几年年底,该车运输累计收入超过总支出?

2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C: ,过点的动直线l与C相交于两点,抛物线C在点A和点B处的切线相交于点Q.

(Ⅰ)写出抛物线的焦点坐标和准线方程;

(Ⅱ)求证:点Q在直线上;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l: (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为(5, ),直线l与曲线C的交点为A,B,求|MA||MB|的值.

查看答案和解析>>

同步练习册答案